4752 (C2) Concepts for Advanced Mathematics

Section A

1	$40x^3$	2	-1 if extra term	2
2	(i) 3	1		
	(ii) 141	2	M1 for $9 \times (1 + 2 + 3 + 4 + 5) + 1 + 2 + 3$	3
3	right angled triangle with 1 and 2 on correct sides	M1	or M1 for $\sin\theta = \frac{1}{2}\cos\theta$ and M1 for substituting in $\sin^2 \theta + \cos^2 \theta = 1$	
	Pythagoras used to obtain hyp = $\sqrt{5}$	M1 A1	E1 for sufficient working	3
	$\cos\theta = \frac{a}{h} = \frac{2}{\sqrt{5}}$			
4	(i)line along <i>y</i> = 6 with V (1, 6), (2, 2), (3, 6)	2	1 for two points correct	
	(ii) line along <i>y</i> = 3 with V (-2,3), (-1,1), (0,3)	2	1 for two points correct	4
5	$2x^{6} + \frac{3}{4}x^{\frac{4}{3}} + 7x + c$	5	1 for $2x^6$; 2 for $\frac{3}{4}x^{\frac{4}{3}}$ or 1 for other $kx^{\frac{4}{3}}$; 1 for $7x$;	
			1 for $+c$	5
6	(i) correct sine shape through O amplitude of 1 and period 2π shown	1 1		
	(ii) 7π/6 and 11π/6	3	B2 for one of these; 1 for $-\pi/6$ found	5
7	(i) 60	2	M1 for $2^2 + 2^3 + 2^4 + 2^5$ o.e.	
	(ii) -6 (iii)	1		
	4	1 1	Correct in both quadrants Through (0, 1) shown dep.	
				5
8	r = 1/3 s.o.i.	2	1 mark for ar = $18 and ar^3 = 2$ s.o.i.	
	$a = 54$ or ft $18 \div$ their r	M1 M1		
	$S = \frac{a}{1-r}$ used with $-1 < r < 1$	A1		5
9	S = 81 c.a.o. (i) 0.23 c.a.o.	1		
	(ii) 0.1 or 1/10	1	10 ⁻¹ not sufficient	
	(iii) $4(3x+2)$ or $12x+8$	1		
	(iv) $[y =] 10^{3x+2}$ o.e.	1		4

Section B

10	i	$h = 120/x^2$	B1		
10	•	$A = 2x^{2} + 4xh$ o.e.	M1		
		completion to given answer	A1	at least one interim step shown	3
	ii	$A' = 4x - 480/x^2$ o.e.	2 2	1 for kx^2 o.e. included	4
		$A^{\prime\prime} = 4 + 960 / x^3$	2	ft their A' only if kx^2 seen ; 1 if one error	4
	iii	use of $A' = 0$	M1		
		$x = \sqrt[3]{120}$ or 4.9(3)	A1		
		Test using A' or A'' to confirm			
		minimum	T1		5
		Substitution of their x in A	M1	Dependent on previous M1	5
		A = 145.9 to 146	A1		
11	iA	$BC^2 = 348^2 + 302^2 - 2 \times 348 \times$	M2	M1 for recognisable attempt at	
		302 × cos 72°			
		BC = 383.86 1033.86[m] or ft 650 + their BC	A1 1	to 3 sf or more accept to 3 sf or more	4
			1		7
	iB	$\frac{\sin B}{\sin B} = \frac{\sin 72}{\sin 72}$	M1	Cosine Rule acceptable or Sine Rule	
		$\overline{302} = \frac{1}{\text{their } BC}$		to find C	
		B = 48.4	A1 M1	or 247 + their C	
		355 – their B o.e.	A1	or 247 + their C	4
		answer in range 306 to307	/		
	ii	Arc length PQ = $\frac{224}{360} \times 2\pi \times 120$		M1 for $\frac{136}{360} \times 2\pi \times 120$	
		500	M2	360 27 120	
		o.e. or 469.1 to 3 sf or more	B1		
		QP = 222.5to 3 sf or more answer in range 690 to 692 [m]	A1		
					4
12	iA	$x^4 = 8x$	M1		
12	17	(2, 16) c.a.o.	A1		
		PQ = 16 and completion to show			
		$\frac{1}{2} \times 2 \times 16 = 16$	A1	NB answer 16 given	3
		5			
	iB	$x^{5}/5$	M1 M1	ft only if integral attempted, not for x^4	
		evaluating their integral at their co-ord of P and zero [or 32/5 o.e.]	1411	or differentiation	
		9.6 o.e.	A1	c.a.o.	3
		$6x^2h^2 + 4xh^3 + h^4$	0	D4 for two to man a series at	
	iiΑ	0x 11 + 4x11 + 11	2	B1 for two terms correct.	2
					-
	iiВ	$4x^3 + 6x^2h + 4xh^2 + h^3$	2	B1 for three terms correct	2
	iiC	4 <i>x</i> ³	1		1
	iiD	gradient of [tangent to] curve	1		1

2