4722 Core Mathematics 2

		Mark	Total	
1	area of sector = $\frac{1}{2} \times 11^2 \times 0.7$ = 42.35 area of triangle = $\frac{1}{2} \times 11^2 \times \sin 0.7 = 38.98$ hence area of segment = 42.35 - 38.98 = 3.37	M1 A1 M1 A1	4	Attempt sector area using $(\frac{1}{2}) r^2 \theta$ Obtain 42.35, or unsimplified equiv, soi Attempt triangle area using $\frac{1}{2}ab\sin C$ or equiv, and subtract from attempt at sector Obtain 3.37, or better
			4	
2	area $\approx \frac{1}{2} \times 2 \times \left\{ 2 + 2\left(\sqrt{12} + \sqrt{28}\right) + \sqrt{52} \right\}$	M1		Attempt <i>y</i> -values at $x = 1, 3, 5, 7$ only
		M1 M1		Correct trapezium rule, any <i>h</i> , for their <i>y</i> values to find area between $x = 1$ and $x = 7$
	≈ 26.7	A1	4	Correct <i>h</i> (soi) for their <i>y</i> values Obtain 26.7 or better (correct working only)
			4	
3	(i) $\log_a 6$	B1	1	State $\log_a 6$ cwo
	(ii) $2\log_{10} x - 3\log_{10} y = \log_{10} x^2 - \log_{10} y^3$	M1*		Use $b \log a = \log a^b$ at least once
	$= \log_{10} \frac{x^2}{y^3}$	M1d	ep*	Use $\log a - \log b = \log a/b$
		A1	3	Obtain $\log_{10} \frac{x^2}{y^3}$ cwo
			4	
4	(i) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$	M1		Attempt to use correct sine rule in $\triangle BCD$, or equiv.
	BD = 18.4 cm	A1	2	Obtain 18.4 cm
	(ii) $18.4^2 = 10^2 + 20^2 - 2 \ge 10 \ge 20 \ge 0.3998$	M1 M1		Attempt to use correct cosine rule in $\triangle ABD$ Attempt to rearrange equation to find cos <i>BAD</i>
	$\theta = 66.4^0$	A1	3	(from $a^2 = b^2 + c^2 \pm (2)bc \cos A$) Obtain 66.4 ⁰
			5	
5	$\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}}$	M1		Attempt to integrate
		A1√		Obtain correct, unsimplified, integral following their $f(x)$ Obtain $8x^{\frac{3}{2}}$, with or without + <i>c</i>
	$y = 8x^{\frac{3}{2}} + c \Longrightarrow 50 = 8 \times 4^{\frac{3}{2}} + c$	A1 M1		Use $(4, 50)$ to find c
	$\Rightarrow c = -14$	A1√		Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only
	Hence $y = 8x^{\frac{3}{2}} - 14$	A1 A1	6	State $y = 8x^{\frac{3}{2}} - 14$ aef, as long as single power of x
			6	
			<u> </u>	

Mark Scheme

			Mark	Total	
6	(i)	$u_1 = 7$	B1		Correct u_1
Ū	(-)	$u_2 = 9, u_3 = 11$	B1	2	Correct u_2 and u_3
	(ii)	Arithmetic Progression	B1	1	Any mention of arithmetic
	(11)			-	
	(iii)	$\frac{1}{2}N(14 + (N - 1) \ge 2200)$	B1		Correct interpretation of sigma notation
			M1		Attempt sum of AP, and equate to 2200
		$N^2 + 6N - 2200 = 0$	A1		Correct (unsimplified) equation
		(N-44)(N+50) = 0	M1	_	Attempt to solve 3 term quadratic in N
		hence $N = 44$	A1	5	Obtain $N = 44$ only $(N = 44$ www is full marks)
				8	
7	(i)	Some of the area is below the <i>x</i> -axis	B1	1	Refer to area / curve below x-axis or 'negative
	(••)		1.11		area'
	(ii)		M1 A1		Attempt integration with any one term correct Obtain $\frac{1}{3}x^3 - \frac{3}{2}x^2$
		$\left[\frac{1}{3}x^3 - \frac{3}{2}x^2\right]_0^3 = \left(9 - \frac{27}{2}\right) - \left(0 - 0\right)$	M1		Use limits 3 (and 0) – correct order / subtraction
		$= -4\frac{1}{2}$	A1		Obtain (-)4 ¹ /2
		$\left[\frac{1}{3}x^3 - \frac{3}{2}x^2\right]_3^5 = \left(\frac{125}{3} - \frac{75}{2}\right) - \left(9 - \frac{27}{2}\right)$	M1		Use limits 5 and 3 – correct order / subtraction
		$=8\frac{2}{3}$	A1		Obtain $8^2/_3$ (allow 8.7 or better)
		Hence total area is $13^{1}/_{6}$	A1	7	Obtain total area as $13^{1}/_{6}$, or exact equiv
					SR: if no longer $\int f(x) dx$, then B1 for using [0, 3] and [3, 5]
				8	
8	(i)	$u_4 = 10x0.8^3$	M1		Attempt u_4 using ar^{n-1}
		= 5.12	A1	2	Obtain 5.12 aef
	(ii)	$S_{20} = \frac{10(1 - 0.8^{20})}{1 - 0.8}$	M1		Attempt use of correct sum formula for a GP
		= 49.4	A1	2	Obtain 49.4
	(iii)	$\frac{10}{1-0.8} - \frac{10(1-0.8^{N})}{(1-0.8)} < 0.01$	M1		Attempt S_{∞} using $\frac{a}{1-r}$
		1 - 0.8 (1 - 0.8)			
		$50, 50(1, 0.9^{N}), 0.01$	A1		Obtain $S_{\infty} = 50$, or unsimplified equiv
		$50 - 50(1 - 0.8^N) < 0.01$ $0.8^N < 0.0002$ A.G.	M1 A1		Link $S_{\infty} - S_N$ to 0.01 and attempt to rearrange
		$\log 0.8^N < \log 0.0002$ A.G.	M1		Show given inequality convincingly Introduce logarithms on both sides
		$N \log 0.8 < \log 0.0002$ $N \log 0.8 < \log 0.0002$	M1 M1		Use $\log a^b = b \log a$, and attempt to find N
	N >	38.169, hence $N = 39$	A1	7	Obtain $N = 39$ only
				,	
				11	

			Mark T	otal	
•	(i)	(90°, 2), (-90°, -2)	B1 B1	2	State at least 2 correct values State all 4 correct values (radians is B1 B0)
	(ii)	(a) 180 - α	B1	1	State 180 - α
	(11)	(b) $-\alpha \text{ or } \alpha - 180$	B1	1	State - α or $\alpha - 180$
					(radians or unsimplified is B1B0)
	(iii)	$2\sin x = 2 - 3\cos^2 x$ $2\sin x = 2 - 3(1 - \sin^2 x)$	M1		Attempt use of $\cos^2 x = 1 - \sin^2 x$
		$2\sin x = 2 - 3(1 - \sin x)$ $3\sin^2 x - 2\sin x - 1 = 0$	M1 A1		Attempt use of $\cos x = 1 - \sin x$ Obtain $3\sin^2 x - 2\sin x - 1 = 0$ aef with no bracket
		$(3\sin x + 1)(\sin x - 1) = 0$	M1		Attempt to solve 3 term quadratic in sinx
		$\sin x = -\frac{1}{3}$, $\sin x = 1$	A1		Obtain $x = -19.5^{\circ}$
		$x = -19.5^{\circ}, -161^{\circ}, 90^{\circ}$	A1√		Obtain second correct answer in range, followin
				_	their x
			A1	6	Obtain 90° (radians or extra answers is max 5 out of 6)
					SR: answer only (and no extras) is B1 B1 $\sqrt{10}$ B1
			1	0	
0	(i)	$(2x+5)^4 = (2x)^4 + 4(2x)^35 + 6(2x)^25^2 + 4(2x)5^3 + 5^4$	M1*		Attempt expansion involving powers of $2x$ and $\frac{2}{3}$
		$= 16x^4 + 160x^3 + 600x^2 + 1000x + 625$	M1*		(at least 4 terms) Attempt coefficients of 1, 4, 6, 4, 1
		= 101 + 1001 + 0001 + 10001 + 025	A1dep	*	Obtain two correct terms
			A1	4	Obtain a fully correct expansion
	(ii)	$(2x+5)^4 - (2x-5)^4 = 320x^3 + 2000x$	M1		Identify relevant terms (and no others) by sign
					change oe
			A1	2	Obtain $320x^3 + 2000x$ cwo
	(iii)	$9^4 - (-1)^4 = 6560$ and $7360 - 800 = 6560$ A.G.	B1		Confirm root, at any point
		$320x^3 - 1680x + 800 = 0$	M1		Attempt complete division by $(x - 2)$ or equiv
		$4x^3 - 21x + 10 = 0$	A1√		Obtain quotient of $ax^2 + 2ax + k$, where <i>a</i> is their coeff of x^3
		$(x-2)(4x^2+8x-5) = 0$	A1		their coeff of x^{*} Obtain $(4x^{2} + 8x - 5)$ (or multiple thereof)
		(x-2)(4x + 6x - 5) = 0 (x-2)(2x-1)(2x + 5) = 0	M1		Attempt to solve quadratic $(4x + 6x - 5)$ (of multiple thereof)
		Hence $x = \frac{1}{2}, x = -\frac{21}{2}$	A1	6	Obtain $x = \frac{1}{2}, x = -\frac{2}{2}$
					SR: answer only is B1 B1
			-		
				2	