4723 Core Mathematics 3

1 (i)	Show correct process for composition of functions	M1		numerical or algebraic; the right way round
	Obtain $(-3 \text{ and hence}) -23$	A1	2	
(ii)	<u>Either</u> : State or imply $x^3 + 4 = 12$	B 1		
	Attempt solution of equation involving x^3 Obtain 2	M1 A1		as far as $x = \dots$ and no other value
	<u>Or</u> : Attempt expression for f^{-1}	M1		involving x or y ; involving cube root
	Obtain $\sqrt[3]{x-4}$ or $\sqrt[3]{y-4}$ Obtain 2	A1	(2)	and no other value
	obtain 2	AI	(3)	
2 (i)	Obtain correct first iterate 2.864	B1		or greater accuracy 2.864327;
	Carry out correct iteration process	M1		condone 2 dp here and in working to find at least 3 iterates in all
	Obtain 2.877	A1	3	after at least 4 steps; answer required to exactly 3 dp
	$[3 \rightarrow 2.864327 \rightarrow 2.878042 \rightarrow 2.876]$	5661 →	2.8	
(ii)	State or imply $x = \sqrt[3]{31 - \frac{5}{2}x}$	B 1		
	Attempt rearrangement of equation in x	M1		involving cubing and grouping non-zero terms on LHS
	Obtain equation $2x^3 + 5x - 62 = 0$	A1	3	or equiv with integers
				1 .
3 (a)	State correct equation involving $\cos \frac{1}{2}\alpha$	B 1		such as $\cos \frac{1}{2}\alpha = \frac{1}{4}$ or $\frac{1}{\cos \frac{1}{2}\alpha} = 4$
	Attempt to find value of α	M1		or using correct order for the steps
	Obtain 151	A1	3	or greater accuracy; and no other values between 0 and 180
(b)	State or imply $\cot \beta = \frac{1}{\tan \beta}$	B 1		
	tan β Rearrange to the form tan $\beta = k$	M1		or equiv involving sin β only or
	Obtain 69.3			$\cos \beta$ only; allow missing \pm
	Obtain 69.3 Obtain 111	A1 A1	4	or greater accuracy; and no others
				between 0 and 180
4 (i)	Obtain derivative of form $kh^5(h^6 + 16)^n$	M1		any constant <i>k</i> ; any $n < \frac{1}{2}$; allow if
	Obtain correct $3h^{5}(h^{6}+16)^{-\frac{1}{2}}$	A1		- 4 term retained
	Substitute to obtain 10.7	A1 A1	3	or (unsimplified) equiv; no –4 now or greater accuracy or exact equiv
(ii)	Attempt multn or divn using 8 and answer from (i) M1			· ·
(11)	Attempt 8 divided by answer from (i) Obtain 0.75	M1 A1v		or greater accuracy; allow 0.75 ± 0.01 ; following their answer from (i)

Mark Scheme

4723

5 (a)	Obtain integral of form $k(3x+7)^{10}$	M1 any constant <i>k</i>	
	Obtain (unsimplified) $\frac{1}{10} \times \frac{1}{3} (3x+7)^{10}$	A1 or equiv	
	Obtain (simplified) $\frac{1}{30}(3x+7)^{10} + c$	A1 3	
(b)	State $\int \pi (\frac{1}{2\sqrt{x}})^2 dx$	B1 or equiv involving x ; condone no d x	
	Integrate to obtain $k \ln x$	M1 any constant k involving π or not; or equiv such as $k \ln 4x$ or $k \ln 2x$	
	Obtain $\frac{1}{4}\pi \ln x$ or $\frac{1}{4}\ln x$ or $\frac{1}{4}\pi \ln 4x$ or $\frac{1}{4}\ln 4x$ A Show use of the log $a - \log b$ property Obtain $\frac{1}{4}\pi \ln 2$		
6 (i)	Either: Refer to translation and reflection State translation by 1 in negative <i>x</i> -direction	B1 in either order; allow clear equivsB1 or equiv but now using correct	
	State reflection in x-axisOr:Refer to translation and reflectionState reflection in y-axisState translation by 1 in positive x-direction	terminology B1 3 using correct terminology B1 in either order; allow clear equivs B1 B1 (3) with order reflection then translation	
(ii)	Show sketch with attempt at reflection of 'negative'	clearly intended	
	part in x-axis Show (more or less) correct sketch	M1 and curve for 0<x<1 li="" unchanged<="">A1 2 with correct curvature</x<1>	
(iii)	Attempt correct process for finding at least one value	M1 as far as $x =$; accept decimal equivs (degrees or radians) or expressions involving $sin(\frac{1}{3}\pi)$	
	Obtain $1 - \frac{1}{2}\sqrt{3}$	A1 or exact equiv	
	Obtain $1 + \frac{1}{2}\sqrt{3}$	A1 3 or exact equiv; give A1A0 if extra incorrect solution(s) provided	
7 (i)	Attempt use of product rule for xe^{2x}	M1 obtaining +	
. (-)	Obtain $e^{2x} + 2xe^{2x}$	A1 or equiv; maybe within QR attempt	
	Attempt use of quotient rule	M1 with or without product rule	
	Obtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x})-xe^{2x}}{(x+k)^2}$	A1	
	Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x+k)^2}$	A1 5 AG; necessary detail required	
(ii)	Attempt use of discriminant Obtain $4k^2 - 8k = 0$ or equiv and hence $k = 2$	M1 or equiv A1	
	Attempt solution of $2x^2 + 2kx + k = 0$	M1 using their numerical value of k or solving in terms of k using correct formula	
	Obtain $x = -1$	A1	
	Obtain $-e^{-2}$	A1 5 or exact equiv	

Mark Scheme

8 (i) State or imply h = 1Attempt calculation involving attempts at *y* values

> Obtain $a(1 + 4 \times 2 + 2 \times 4 + 4 \times 8 + 2 \times 16 + 4 \times 32 + 64)$ A1 Obtain 91

(ii) State $e^{x \ln 2}$ or $k = \ln 2$ Integrate e^{kx} to obtain $\frac{1}{k}e^{kx}$ Obtain $\frac{1}{\ln 2}(e^{6\ln 2} - e^0)$ Simplify to obtain $\frac{63}{\ln 2}$

(iii) Equate answers to (i) and (ii)

Obtain $\frac{63}{91}$ and hence $\frac{9}{13}$

- B1
M1addition with each of coefficients
1, 2, 4 occurring at least once;
involving at least 5 y values
any constant aA14B1allow decimal equiv such as $e^{0.69x}$
any constant k or in terms of general k
A1
or exact equivA14
- M1 provided ln 2 involved other than in power of e
- A1 2 AG; necessary correct detail required

unambiguously stated

9 (i)	State at least one of $\cos\theta \cos 60 - \sin\theta \sin 60$ and $\cos\theta \cos 30 - \sin\theta \sin 30$ Attempt complete multiplication of identities of form	B1	
	$\pm \cos \cos \pm \sin \sin$	M1	with values $\frac{1}{2}\sqrt{3}$, $\frac{1}{2}$ involved
	Use $\cos^2 \theta + \sin^2 \theta = 1$ and $2\sin \theta \cos \theta = \sin 2\theta$	M1	
	Obtain $\sqrt{3} - 2\sin 2\theta$	A1 4	AG; necessary detail required
(ii)	Attempt use of 22.5 in right-hand side	M1	
	Obtain $\sqrt{3} - \sqrt{2}$	A1 2	or exact equiv
(iii)	Obtain 10.7	B1	or greater accuracy; allow ±0.1
	Attempt correct process to find two angles	M1	from values of 2θ between 0 and 180
	Obtain 79.3	A1 3	or greater accuracy and no others between 0 and 90; allow ± 0.1
(iv)	Indicate or imply that critical values of		
	$\sin 2\theta$ are -1 and 1	M1	
	Obtain both of $k > \sqrt{3} + 2$, $k < \sqrt{3} - 2$	A1	condoning decimal equivs, $\leq \geq$ signs
	Obtain complete correct solution	A1 3	now with exact values and

4723