4736 Decision Mathematics 1

1	(i)	5 2 4 3 8 Bin 1: 5 2 3 Bin 2: 4 Bin 3: 8	M1 A1	First bin correct All correct in three bins	[2]
	(ii)	8 5 4 3 2 Bin 1: 8 2 Bin 2: 5 4 Bin 3: 3	M1 A1	First bin correct All correct in three bins	[2]
	(iii)	The heaviest box is originally at the bottom of the stack	B1	Referring to the physical act of sorting the weights into decreasing order	[1]
	(iv)	Bins in any order and boxes in any order Bin 1: 8 or 8 Bin 2: 5 3 5 2 Bin 3: 4 2 4 3	B1	Any valid packing into three bins of capacity 8 kg.	[1]
	•			Total =	6

4 moves B1 Stating 4 (ii) Neither M1 'Neither', together with an attempt at a reason It has four odd nodes The nodes 2, 4, 6, 8 each have three arcs joined to them whereas an Eulerian graph has no odd nodes and a semi-Eulerian graph has exactly two odd nodes However, just defining Eulerian and semi-Eulerian, without reference to this graph, is not enough [2]	2	(i)	1 2 3 4 5 6 7 8 9	M1 A1	A connected graph with nine vertices labelled 1 to 9 Correct graph	
It has four odd nodes A1 A correct reference to the number of odd nodes for this graph. Be careful about whether 'odd' refers to the parity or the value. The nodes 2, 4, 6, 8 each have three arcs joined to them whereas an Eulerian graph has no odd nodes and a semi-Eulerian graph has exactly two odd nodes The nodes 2, 4, 6, 8 each have three arcs whether 'odd' refers to the parity or the value. However, just defining Eulerian and semi-Eulerian, without reference to this graph,			4 moves	B1	Stating 4	[3]
nodes for this graph. Be careful about whether 'odd' refers to the parity or the value. graph has no odd nodes and a semi- Eulerian graph has exactly two odd nodes nodes nodes for this graph. Be careful about whether 'odd' refers to the parity or the value. However, just defining Eulerian and semi- Eulerian, without reference to this graph,		(ii)	Neither	M1		
			The nodes 2, 4, 6, 8 each have three arcs joined to them whereas an Eulerian graph has no odd nodes and a semi-Eulerian graph has exactly two odd	A1	nodes for this graph. Be careful about whether 'odd' refers to the parity or the value. However, just defining Eulerian and semi-Eulerian, without reference to this graph,	[2]

ANSWERED ON INSERT

	(iii)	A-D-C-F-G or $16+18+21+58+$ $A-D-C-F-G-B-E-A$ Upper bound = 274	M1 A1 B1	Using nearest neighbour Correct closed tour listed, not just weights added 274 (cao)	[3]
	(ii)	Delete BG from spanning tree $186 - 46 = 140$ Two shortest arcs from G are BG and EG $140 + 46 + 55 = 241$ Lower bound = 241	B1 M1 A1	Correct working for wrong vertex deleted can score B1, M1, A0 Weight of MST on reduced network (ft from part (i) Adding two shortest arcs to MST 241 (cao)	[3]
		BC = 35 $BG = 46$ $AB = 50$ $EG = 55$ $FG = 58$ $AE = 80$ $AF = 100$ Total weight = 186	M1 A1 B1	Drawing a spanning tree for these six vertices Correct (minimum) spanning tree drawn 186 (cao)	[5]
3	(i)	AD = 16 CD = 18 CF = 21 AC = 23 DF = 34 BE = 35	M1 A1	Using Kruskal: Not selecting <i>AC</i> and <i>DF</i> Selecting correct arcs in list, or implied (16+18+21+35+46+50, in this order with no others, can imply M1, A1)	

ANSWERED ON INSERT

	T T T T T T T T T T T T T T T T T T T		ANSWERED ON INSERT	_
4 (i)	J_ 120A	B1	Times for flying route,	
	1		JA = 120 $AG = 80$	
	240 5 15		GU = 60 UM = 15 GM = 80	
	\80	B1	Times for train route correct	
	F $F $ $F $ $F $ F	Di	JT = 15 JB = 5 BT = 20	
	300 \		TP = 300 PU = 20 PM = 30	
	W V P G			
	20 15 10 30 20	B1	Times for coach route and driving route	
	40 80 60		correct	
			BV = 400 VU = 10 VM = 15	
	M 15 U		$JF = 240 \ FW = 30 \ WU = 20 \ WM = 40$	[3]
	Strictly, these are directed arcs, but they are		Follow through their arc weights	
	shown as undirected arcs		if reasonable	
			ii reasonable	
	1 0 4 120			
	J I	M1	Permanent values correct at A, F, B, T	
			A = 120, F = 240, B = 5, T = 15	
	F 6 240 B 2 5 T 3 15	3.51 1	D 1 200 1255	
	240 5 15	M1 d	Both 280 and 275 seen at M	
			(updating at M)	
	V P	A1 ft	All temporary labels correct (or implied)	
	405 315	711 10	and no extras	
	5 200			
	270	B1 ft	All permanent labels correct (or implied)	
			(condone labelling past <i>M</i>)	
	M = 9 = 275 $U = 7 = 260$	D1 6	Out	
	280 275 260	B1 ft	Order of labelling correct (condone labelling past <i>M</i>)	
			(condone labelling past W)	
	Alternatively, if treating as undirected:			
	J, A, F, B and T are unchanged, then			
	Or $V = 8^{th}$ $V = 270$ P			
	and $W = Q^{th}$			
	405 270 315 280		Marked as above	
	W 8 270 G 5 200			
	270			
	200			
	M = 10 275 = U 7 260			
	280 275 260			
	Route: <i>J - A - G - U - M</i>	B1	Correct answer only	[6]

(ii)	The quickest journey time from Jenny's house to the meeting venue	B1	Quickest journey / least travel time or equivalent	[1]
(iii)	Does not allow for waiting for connections There may be delays at the airport She may not want to fly because of the 'carbon footprint' She may want to choose the cheapest route rather than the quickest route She may not like flying She may want to see her friend She may want to break the journey overnight	B1 B1	Any reasonable suggestion for why she may not want to use the drive/fly/underground route or why she may want to use a different route Any second reasonable suggestion	[2]
			Total =	12

5	(i)	x = area of wall to be panelled (m ²) y = area to be painted z = area to be covered with pinboard	B1 B1	Reference to area or m^2 (at least once) Identifying x as panelling, y as paint and z as pinboard, in any way	[2]
	(ii)	Cost \leq £150 \Rightarrow 8x + 4y + 10z \leq 150 \Rightarrow 4x + 2y + 5z \leq 75 (given)	B1 B1	Use of word 'cost' or equivalent $8x + 4y + 10z \le 150$ seen or explicitly referred to	[2]
	(iii)	(Minimise $P = 15x + 30y + 20z$	B1 ft	Any positive multiple of this eg $3x + 6y + 4z$ or $\frac{1}{4}x + \frac{1}{2}y + \frac{1}{3}z$	[1]
	(iv)	(Minimise $P = 480 + 0.5x + 10y$ Subject to $x + 3y \ge 45$ $x \ge 10$ $y \ge 0$ $x + y \le 22$	B1 ft B1	Any positive multiple of this, eg $2y-x(+c)$ - or maximise a negative multiple Any equivalent simplified form $x \ge 10$ may be implied $y \ge 0$ may be implied $x + y \le 22$, any equivalent simplified form	[3]
	(v)	14	M1 M1	ANSWERED ON GRAPH PAPER $x = 10$ drawn accurately with a sensible scale $x + y = 22$ drawn accurately with a sensible scale	
		12	M1	Their $x + 3y = 45$ drawn accurately with a sensible scale	
		10 12 14	A1 x	Shading correct or identification of the feasible region (triangle with $(10, 11\frac{2}{3})$, $(10, 12)$ and $(10\frac{1}{2}, 11\frac{1}{2})$ as vertices)	[4]
				Total =	12

				,			1	i	
6	(i)	P x 1 -25	y z -14 32	<i>s</i> 0	<i>t</i> 0	0	B1	Rows and columns may be in any order Objective row with -25, -14, 32	
		0 6	-4 3	1	0	24	B1	Constraint rows correct (condone	
		0 5	-3 10	0	1	15	D1	omission of <i>P</i> column)	[2]
					_			omission of T column)	
	(ii)	x column has a	a negative v	alue in	object	ive row	B1	'negative in top row', '-25', or similar	
					· ·			'most negative in top row' ⇒ bod B1	
		Cannot use y	column sind	e it has	negati	ive			
		entries in all th			Č		B1	Correct reason for not choosing <i>y</i> column	
		$24 \div 6 = 4$						Both divisions seen and correct choice	
		$15 \div 5 = 3$					B1	made (or both divisions seen and correct	[3]
		Least non-neg	ative ratio	s 3, so	pivot c	on 5		choice implied from pivoting)	[0]
	(iii)		,		<u> </u>			Follow through their sensible tableau	
	(111)							(with two slack variable columns) and	
		1 0	-29 82	0	5	75		pivot	
		0 0	-0.4 -9	_			M1	prvot	
							A1	Pivot row correct (no numerical errors)	[2]
		0 1	-0.6	0	0.2	3	AI	Other rows correct (no numerical errors)	L#J
							B1	Other rows correct (no numerical errors)	
		New row 3 =	$\frac{1}{5}$ row 3				DI	Coloulation for pivot row	
		New row $1 = 1$	row 1 + 25	new ro	w 3	oe .	B1	Calculation for pivot row	
		New row $2 = 1$	row 2 - 6×r	ew row	, 3	ne e	B1	Coloulation for alticative many	[2]
		1,0,10,10,12	1011 2 0/1				ы	Calculation for objective row	[3]
		x = 3, y = 0, z	= 0				D1 6	Calculation for other row	
		A = 3, y = 0, z P = 75	- 0				B1 ft	1 6 41 411	[2]
		1 – 73					B1 ft	x, y and z from their tableau	[2]
								<i>P</i> from their tableau, provided $P \ge 0$	
	(iv)	Problem is un					B1	Any one of these, or equivalent.	
		No limit to ho							
		Only negative	in objectiv	e row i	s y colı	ımn, but		If described in terms of pivot choices,	
		all entries in the	his column	are neg	ative			must be complete and convincing	[1]
								_	
								Total =	13

		$F = N \div A$ $G = INT$ $H = B \times A$ $C = N - A$ $N = G$	(F) G					For reference only	
7	(i)	F	G	Н	С	N	M1	A reasonable attempt at first pass	
		2.5	2	4	1	2	A1 A1	(presented in any form) F = 2.5 and $G = 2H = 4$ (or double their G value)	
		1	1	2	0	1		and $C = 5$ – their H	
		0.5	0	0	1	0	A1	F, G, H, C and N correct for second pass (ft their N value)	
		0.5	O	O	1	U	A1	F, G, H, C and N correct for third pass (ft their N value)	[5]
	(ii)	F -2.5	<i>G</i> -3	Н -6	<i>C</i>	N -3	M1 M1 d	A reasonable attempt First pass correct (or implied)	
		-1.5	-2	-4	1	-2	WII G	1 Tist pass correct (or implied)	
		-1 -0.5	-1 -1	-2 -2	0 1	-1 -1	A1	Reaching two lines with the same value	
		-0.5	-1	-2 -2	1	-1	711	for G	
								If described in words only, then M1 for a correct statement; M1 d for all correct statements (sufficient to guarantee result), and A1 for convincingly correct explanation of how they know these to be true and why the result follows	
		Does not	termina	te			B1	Saying 'does not stop', or equivalent	[4]
	(iii)	F 3.7 0.3	<i>G</i> 3 0	H 30 0	<i>C</i> 7 3	N 3 0	M1 A1	First pass correct All correct	
		second v	alue is th	the units ne tens dig t, and so	git, the th	V, the ird value is	M1 A1	Outputs are digits of <i>N</i> In reverse order	[4]
	1						l	Total =	13