4761 I

Mechanics 1

Q 1		Mark	Comment	Sub
(i)	$15 - \frac{v}{15}$ m s $\frac{1}{0}$ 10 30 35	B1	Acc and dec shown as straight lines	
		B1 B1	Horizontal straight section All correct with v and times marked and at least one axis labelled. Accept (t, v) or (v, t) used.	3
(ii)	Distance is found from the area area is $\frac{1}{2} \times 10 \times 15 + 20 \times 15 + \frac{1}{2} \times 5 \times 15$ (or $\frac{1}{2} \times (20 + 35) \times 15$) = 412.5 so distance is 412.5 m	M1 A1 A1	At least one area attempted or equivalent uvast attempted over one appropriate interval. Award for at least two areas (or equivalent) correct Allow if a trapezium used and only 1 substitution error. FT their diagram. cao (Accept 410 or better accuracy)	
		6		3
2 (i)	$\begin{pmatrix} 6\\ 9 \end{pmatrix} = 1.5 \mathbf{a} \text{ giving } \mathbf{a} = \begin{pmatrix} 4\\ 6 \end{pmatrix} \text{ so } \begin{pmatrix} 4\\ 6 \end{pmatrix} \text{ m s}^{-2}$	6 M1 A1	Use of N2L with an attempt to find a . Condone spurious notation. Must be a vector in proper form. Penalise only once in paper.	
(ii)	Angle is $\arctan(\frac{6}{4})$ = 56.309 so 56.3° (3 s. f.)	M1 F1	Use of arctan with their $\frac{6}{4}$ or $\frac{4}{6}$ or equiv. May use F . FT their a provided both cpts are +ve and non-zero.	2
(iii)	Using $\mathbf{s} = t\mathbf{u} + 0.5t^2\mathbf{a}$ we have	M1	Appropriate single $uvast$ (or equivalent sequence of $uvast$). If integration used twice condone omission of $r(0)$ but not $v(0)$.	-
	$s = 2 \begin{pmatrix} -2 \\ 3 \end{pmatrix} + 0.5 \times 4 \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ so $\begin{pmatrix} 4 \\ 18 \end{pmatrix}$ m	A1 A1	FT their a only cao. isw for magnitude subsequently found.	
		7	Vector must be in proper form (penalise only once in paper).	3

Q 3		Mark	Comment	Sub
(i)	$m \times 9.8 = 58.8$ so $m = 6$	M1 A1	T = mg. Condone sign error. cao. CWO.	2
(ii)	Resolve $\rightarrow 58.8\cos 40 - F = 0$	M1 B1	Resolving their tension. Accept $s \leftrightarrow c$. Condone sign errors but not extra forces. (their 7) × cos 40 (or equivalent) seen	
	<i>F</i> = 45.043 so 45.0 N (3 s. f.)	A1	Accept ± 45 only.	3
(iii)	Resolve \uparrow R+58.8sin 40-15×9.8=0 R = 109.204 so 109 N (3 s. f.)	M1 A1 A1	Resolving their tension. All forces present. No extra forces. Accept $s \leftrightarrow c$. Condone errors in sign. All correct cao	3
		8		
Q 4		Mark	Comment	Sub
(i)	Resultant is $\begin{pmatrix} 4\\1\\2 \end{pmatrix} + \begin{pmatrix} -6\\2\\4 \end{pmatrix} = \begin{pmatrix} -2\\3\\6 \end{pmatrix}$	M1	Adding the vectors. Condone spurious notation. Vector must be in proper form (penalise	
	Magnitude is $\sqrt{(-2)^2 + 3^2 + 6^2} = \sqrt{49} = 7 \text{ N}$	A1 M1 F1	only once in the paper). Accept clear components. Pythagoras on their 3 component vector. Allow e.g. -2^2 for $(-2)^2$ even if evaluated as -4 . FT their resultant.	4
(ii)	F + 2G + H = 0	M1	Either F + 2 G + H = 0 or F + 2 G = H	
	So $\mathbf{H} = -2\mathbf{G} - \mathbf{F} = -\begin{pmatrix} -12\\4\\8 \end{pmatrix} - \begin{pmatrix} 4\\1\\2 \end{pmatrix}$	A1	Must see attempt at H = – 2 G – F	
	$= \begin{pmatrix} 8\\ -5\\ -10 \end{pmatrix}$	A1	cao. Vector must be in proper form (penalise only once in the paper).	
		-		3
		7		

	Mark	Comment	Sub
a = 12 - 6t	M1	Differentiation, at least one term correct.	
a = 0 gives $t = 2$	A1 F1	Follow their a	
$x = \int (2+12t-3t^2) \mathrm{d}x$	M1	Integration indefinite or definite, at least one term correct.	
$2t + 6t^2 - t^3 + C$	A1	Correct. Need not be simplified. Allow as definite integral. Ignore C or limits	
x = 3 when $t = 0$	M1	Allow $x = \pm 3$ or argue it is \int_{0}^{2} from A then ± 3	
so $3 = C$ and			
$x = 2t + 6t^2 - t^3 + 3$	A1	Award if seen WWW or $x = 2t + 6t^2 - t^3$ seen with +3 added later.	
x(2) = 4 + 24 - 8 + 3 = 23 m	B1	FT their <i>t</i> and their <i>x</i> if obtained by integration but not if -3 obtained instead of +3. [If 20 m seen WWW for displacement award SC6] [Award SC1 for position if constant acceleration used for displacement and then +3 applied]	8
	8		0
	$a = 0 \text{ gives } t = 2$ $x = \int (2 + 12t - 3t^{2}) dx$ $2t + 6t^{2} - t^{3} + C$ $x = 3 \text{ when } t = 0$ so $3 = C$ and $x = 2t + 6t^{2} - t^{3} + 3$	$a = 12 - 6t$ M1 $a = 0$ gives $t = 2$ F1 $x = \int (2 + 12t - 3t^2) dx$ M1 $2t + 6t^2 - t^3 + C$ A1 $x = 3$ when $t = 0$ M1 so $3 = C$ and M1 $x = 2t + 6t^2 - t^3 + 3$ A1	$a = 12 - 6t$ M1 A1 F1Differentiation, at least one term correct. $a = 0$ gives $t = 2$ M1 F1Follow their a $x = \int (2 + 12t - 3t^2) dx$ M1 $2t + 6t^2 - t^3 + C$ Integration indefinite or definite, at least one term correct. $x = 3$ when $t = 0$ M1 so $3 = C$ and $x = 2t + 6t^2 - t^3 + 3$ M1 M1Allow $x = \pm 3$ or argue it is \int_{0}^{2} from A then ± 3 $x(2) = 4 + 24 - 8 + 3 = 23$ mA1 B1Award if seen WWW or $x = 2t + 6t^2 - t^3$ seen with $+3$ added later. FT their t and their x if obtained by integration but not if -3 obtained instead of $+3$. [If 20 m seen WWW for displacement award SC6] [Award SC1 for position if constant acceleration used for displacement and then $+3$ applied]

33

Q 6		Mark	Comment	Sub
(i)	3.5 = 0.5 + 1.5T	M1	Suitable uvast, condone sign errors.	
	so <i>T</i> = 2 so 2 s	A1	сао	
	$s = \frac{3.5 + 0.5}{2} \times 2$	M1	Suitable <i>uvast</i> , condone sign errors.	
	z^{2} so s = 4 so 4 m	F1	FT their <i>T</i> .	
			[If s found first then it is cao. In this	
			case when finding <i>T</i> , FT their <i>s</i> , if	
			used.]	4
(ii)				4
(A)		N 4 4	Use of N2L. Allow weight omitted	
• •	$N2L \downarrow : 80 \times 9.8 - T = 80 \times 1.5$	M1	and use of <i>F</i> = <i>mga</i>	
			Condone errors in sign but do not allow extra forces.	
		B1	weight correct (seen in (A) or (B))	
	T = 664 so 664 N	A1	cao	
(B)			N2L with all forces and using $F = ma$.	
	N2L \downarrow : 80×9.8- <i>T</i> = 80×(-1.5)	M1	Condone errors in sign but do not allow extra forces.	
	T = 904 so 904 N	A1	cao [Accept 904 N seen for M1 A1]	
				5
(iii)			Use of N2L with $F = ma$. Allow 1 force	
	N2L \uparrow : 2500-80×9.8-116=80 <i>a</i>	M1	missing. No extra forces. Condone errors in sign.	
		A1		
	a = 20 so 20 m s ⁻² upwards.	A1	± 20 , accept direction wrong or	
			omitted	
		A1	upwards made clear (accept diagram)	1
(iv)			Use of N2L on equipment. All forces.	4
(1•)	N2L \uparrow on equipment: $80 - 10 \times 9.8 = 10a$	M1	F = ma.	
			No extra forces. Allow sign errors.	
	a = -1.8	A1	Allow ±1.8	
			N2L for system or for man alone.	
	N2L ↑	M1	Forces correct (with no extras);	
			accept sign errors; their ± 1.8 used	
	either			
	all: $T - (80 + 10) \times 9.8 - 116 = 90 \times (-1.8)$			
	or			
	on man: $T - (80 \times 9.8) - 116 - 80$			
	$= 80 \times (-1.8)$			
	<i>T</i> = 836 so 836 N	A1	cao	
			[NB The answer 836 N is independent of the value taken for <i>g</i>	
			and hence may be obtained if all	
			weights are omitted.]	
		4-		4
		17		

Q 7		Mark	Comment	Sub
(i)	Horiz $21t = 60$	M1	Use of horizontal components and $a = 0$ or $s = vt - 0.5at^2$ with $v = 0$.	
	so $\frac{20}{7}$ s (2.8571)	A1	Any form acceptable. Allow M1 A1 for answer seen WW.	
			[If $s = ut + 0.5at^2$ and $u = 0$ used without justification award M1 A0] [If $u = 28$ assumed to find time then award SC1]	
	either $0 = u - 9.8 \times \frac{20}{7}$	M1	Use of $v = u + at$ (or $v^2 = u^2 + 2as$) with $v = 0$. or Use of $v = u + at$ with $v = -u$ and	
	or $-u = u - 9.8 \times \left(\frac{40}{7}\right)$		appropriate <i>t</i> .	
	or $40 = u \times \frac{20}{7} - 4.9 \left(\frac{20}{7}\right)^2$		or Use of $s = ut + 0.5at^2$ with $s = 40$ and appropriate t Condone sign errors and, where appropriate,	
			$u \leftrightarrow v$.	
	so $u = 28$ so 28 m s ⁻¹	E1	Accept signs not clear but not errors. Enough working must be given for 28 to be	
			properly shown. [NB <i>u</i> = 28 may be found first and used to	
			find time]	4
(ii)	$204 - 0.5 = 0.94^2$			
(")	$y = 28t - 0.5 \times 9.8t^2$	E1	Clear & convincing use of $g = -9.8$ in $s = ut + 0.5at^2$ or $s = vt - 0.5at^2$ NB: AG	
				1
(iii)	Start from same height with same (zero) vertical speed at same time, same	E1	For two of these reasons	
	acceleration			
	Distance apart is $0.75 \times 21t = 15.75t$	M1	0.75×21 <i>t</i> seen or 21 <i>t</i> and 5.25 <i>t</i> both seen with intention to subtract.	
		A1	Need simplification - LHS alone insufficient. CWO.	
(iv)				3
(A)	either Time is $\frac{20}{7}$ s by symmetry	B1	Symmetry or <i>uvast</i>	
	so $15.75 \times \frac{20}{7} = 45$ so 45 m	B1	FT their (iii) with $t = \frac{20}{7}$	
	or Hit ground at same time. By symmetry one travels 60 m so the other travels 15 m in	B1		
	this time ($\frac{1}{4}$ speed) so 45 m.	B1		
			[SC1 if 90 m seen]	2
(B)	see next page			

Q7	continued			
(B)			[SC1 if either and or methods mixed to give $\pm 30 = 28t - 4.9t^2$ or $\pm 10 = 4.9t^2$]	
	either			
	Time to fall is $40-10 = 0.5 \times 9.8 \times t^2$	M1 A1 A1	Considering time from explosion with $u = 0$. Condone sign errors. LHS. Allow ± 30 All correct	
	<i>t</i> = 2.47435	A1	cao	
	need 15.75×2.47435 = 38.971 so 39.0 (3sf) or	F1	FT their (iii) only.	
	Need time so $10 = 28t - 4.9t^2$	M1	Equating $28t - 4.9t^2 = \pm 10$	
	$4.9t^2 - 28t + 10 = 0$	M1*	Dep. Attempt to solve quadratic by a method that could give two roots.	
	SO $t = \frac{28 \pm \sqrt{28^2 - 4 \times 4.9 \times 10}}{9.8}$			
	so 0.382784 or 5.33150	A1	Larger root correct to at least 2 s. f. Both method marks may be implied from two correct roots alone (to at least 1 s. f.). [SC1 for either root seen WW]	
	Time required is 5.33150 $-\frac{20}{7} = 2.47435$	M1		
	need 15.75×2.47435=38.971 so 39.0 (3sf)	F1	FT their (iii) only.	5
(v)	Horiz $(x =) 21t$	B1		
	Elim t between $x = 21t$ and $y = 28t - 4.9t^2$	M1	Intention must be clear, with some attempt made.	
	SO $y = 28\left(\frac{x}{21}\right) - 4.9\left(\frac{x}{21}\right)^2$	A1	<i>t</i> completely and correctly eliminated from their expression for <i>x</i> and correct <i>y</i> . Only accept wrong notation if subsequently explicitly given correct value e.g. $\frac{x^2}{21}$ seen as $\frac{x^2}{441}$.	
	. 1		- 21 ++1	
	So $y = \frac{4x}{3} - \frac{0.1x^2}{9} = \frac{1}{90} (120x - x^2)$	E1	Some simplification must be shown.	
			[SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola]	
				4
		19		