Mechanics 1

Q 1		Mark	Comment	Sub
(i)		B1	Acc and dec shown as straight lines	

Q 3		Mark	Comment	Sub
(i)	$\begin{aligned} & m \times 9.8=58.8 \\ & \text { so } m=6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$T=m g$. Condone sign error. cao. CWO.	
(ii)	$\begin{aligned} & \text { Resolve } \rightarrow 58.8 \cos 40-F=0 \\ & F=45.043 \ldots \text { so } 45.0 \mathrm{~N} \text { (3 s. f.) } \end{aligned}$	M1 B1 A1	Resolving their tension. Accept $s \leftrightarrow c$. Condone sign errors but not extra forces. (their T) $\times \cos 40$ (or equivalent) seen Accept ± 45 only.	
(iii)	Resolve $\uparrow \quad R+58.8 \sin 40-15 \times 9.8=0$ $R=109.204 \ldots \text { so } 109 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f} .)$	M1 A1 A1	Resolving their tension. All forces present. No extra forces. Accept $s \leftrightarrow c$. Condone errors in sign. All correct cao	3
		8		
Q 4		Mark	Comment	Sub
(i)	Resultant is $\left(\begin{array}{l}4 \\ 1 \\ 2\end{array}\right)+\left(\begin{array}{c}-6 \\ 2 \\ 4\end{array}\right)=\left(\begin{array}{c}-2 \\ 3 \\ 6\end{array}\right)$ Magnitude is $\sqrt{(-2)^{2}+3^{2}+6^{2}}=\sqrt{49}=7 \mathrm{~N}$	M1 A1 M1 F1	Adding the vectors. Condone spurious notation. Vector must be in proper form (penalise only once in the paper). Accept clear components. Pythagoras on their 3 component vector. Allow e.g. -2^{2} for (-2$)^{2}$ even if evaluated as - 4 . FT their resultant.	
(ii)	$\begin{aligned} & \mathbf{F}+2 \mathbf{G}+\mathbf{H}=\mathbf{0} \\ & \text { So } \mathbf{H}=-2 \mathbf{G}-\mathbf{F}=-\left(\begin{array}{c} -12 \\ 4 \\ 8 \end{array}\right)-\left(\begin{array}{l} 4 \\ 1 \\ 2 \end{array}\right) \\ & =\left(\begin{array}{c} 8 \\ -5 \\ -10 \end{array}\right) \end{aligned}$	M1 A1 A1	Either $\mathbf{F}+\mathbf{2 G}+\mathbf{H}=\mathbf{0}$ or $\mathbf{F}+\mathbf{2 G}=\mathbf{H}$ Must see attempt at $\mathbf{H}=-2 \mathbf{G}-\mathbf{F}$ cao. Vector must be in proper form (penalise only once in the paper).	
		7		

Q 5		Mark	Comment	Sub
	$\begin{aligned} & a=12-6 t \\ & a=0 \text { gives } t=2 \\ & x=\int\left(2+12 t-3 t^{2}\right) \mathrm{d} x \\ & 2 t+6 t^{2}-t^{3}+C \\ & x=3 \text { when } t=0 \\ & \text { so } 3=C \text { and } \\ & x=2 t+6 t^{2}-t^{3}+3 \\ & x(2)=4+24-8+3=23 \mathrm{~m} \end{aligned}$	M1 A1 F1 M1 A1 M1 A1 B1	Differentiation, at least one term correct. Follow their a Integration indefinite or definite, at least one term correct. Correct. Need not be simplified. Allow as definite integral. Ignore C or limits Allow $x= \pm 3$ or argue it is \int_{0}^{2} from A then ± 3 Award if seen WWW or $x=2 t+6 t^{2}-t^{3}$ seen with +3 added later. FT their t and their x if obtained by integration but not if -3 obtained instead of +3 . [If 20 m seen WWW for displacement award SC6] [Award SC1 for position if constant acceleration used for displacement and then +3 applied]	8
		8		

\begin{tabular}{|c|c|c|c|c|}
\hline Q 6 \& \& Mark \& Comment \& Sub \\
\hline (i) \& \[
\begin{aligned}
\& 3.5=0.5+1.5 T \\
\& \text { so } T=2 \text { so } 2 \mathrm{~s} \\
\& s=\frac{3.5+0.5}{2} \times 2 \\
\& \text { so } s=4 \text { so } 4 \mathrm{~m}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
F1
\end{tabular} \& \begin{tabular}{l}
Suitable uvast, condone sign errors. cao \\
Suitable uvast, condone sign errors. \\
FT their \(T\). \\
[If \(s\) found first then it is cao. In this case when finding \(T\), FT their s , if used.]
\end{tabular} \& 4 \\
\hline \begin{tabular}{l}
(ii) \\
(A) \\
(B)
\end{tabular} \& \[
\begin{aligned}
\& \text { N2L } \downarrow: 80 \times 9.8-T=80 \times 1.5 \\
\& T=664 \text { so } 664 \mathrm{~N} \\
\& \text { N2L } \downarrow: 80 \times 9.8-T=80 \times(-1.5) \\
\& T=904 \text { so } 904 \mathrm{~N}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Use of N2L. Allow weight omitted and use of \(F=m g a\) Condone errors in sign but do not allow extra forces. weight correct (seen in (A) or (B)) cao \\
N2L with all forces and using \(F=m a\). Condone errors in sign but do not allow extra forces. cao [Accept 904 N seen for M1 A1]
\end{tabular} \& 5 \\
\hline (iii) \& N2L \(\uparrow: 2500-80 \times 9.8-116=80 a\)
\[
a=20 \text { so } 20 \mathrm{~m} \mathrm{~s}^{-2} \text { upwards. }
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
Use of N2L with \(F=\) ma. Allow 1 force missing. No extra forces. Condone errors in sign. \\
\(\pm 20\), accept direction wrong or omitted upwards made clear (accept diagram)
\end{tabular} \& \\
\hline (iv) \& ```
N2L \(\uparrow\) on equipment: \(80-10 \times 9.8=10 a\)
\(a=-1.8\)
N2L \(\uparrow\)
either
all: \(T-(80+10) \times 9.8-116=90 \times(-1.8)\)
or
on man: \(T-(80 \times 9.8)-116-80\)
\(=80 \times(-1.8)\)
\(T=836\) so 836 N
``` \& M1
A1
M1

A1 \& | Use of N2L on equipment. All forces. $F=m a$. |
| :--- |
| No extra forces. Allow sign errors. Allow $\pm 1.8$ |
| N2L for system or for man alone. Forces correct (with no extras); accept sign errors; their $\pm 1.8$ used |
| cao |
| [NB The answer 836 N is independent of the value taken for $g$ and hence may be obtained if all weights are omitted.] | \& \\

\hline \& \& 17 \& \& \\
\hline
\end{tabular}

| Q 7 |  | Mark | Comment | Sub |
| :---: | :---: | :---: | :---: | :---: |
| (i) | Horiz $21 t=60$ <br> so $\frac{20}{7}$ S (2.8571...) <br> either $0=u-9.8 \times \frac{20}{7}$ <br> or $-u=u-9.8 \times\left(\frac{40}{7}\right)$ <br> or $40=u \times \frac{20}{7}-4.9\left(\frac{20}{7}\right)^{2}$ <br> so $u=28$ so $28 \mathrm{~m} \mathrm{~s}^{-1}$ | M1 <br> A1 <br> M1 <br> E1 | Use of horizontal components and $a=0$ or $s=v t-0.5 a t^{2}$ with $v=0$. <br> Any form acceptable. Allow M1 A1 for answer <br> seen WW. <br> [If $s=u t+0.5 a t^{2}$ and $u=0$ used without justification award M1 A0] <br> [If $u=28$ assumed to find time then award SC1] <br> Use of $v=u+a t$ (or $v^{2}=u^{2}+2 a s$ ) with $v=0$. <br> or Use of $v=u+$ at with $v=-u$ and appropriate $t$. <br> or Use of $s=u t+0.5 a t^{2}$ with $s=40$ and appropriate $t$ <br> Condone sign errors and, where appropriate, $u \leftrightarrow v$. <br> Accept signs not clear but not errors. Enough working must be given for 28 to be properly shown. <br> [NB $u=28$ may be found first and used to find time] | 4 |
| (ii) | $y=28 t-0.5 \times 9.8 t^{2}$ | E1 | Clear \& convincing use of $g=-9.8$ in $s=u t+0.5 a t^{2}$ or $s=v t-0.5 a t^{2}$ NB: AG | 1 |
| (iii) | Start from same height with same (zero) vertical speed at same time, same acceleration <br> Distance apart is $0.75 \times 21 t=15.75 t$ | E1 <br> M1 <br> A1 | For two of these reasons <br> $0.75 \times 21 t$ seen or $21 t$ and $5.25 t$ both seen with intention to subtract. <br> Need simplification - LHS alone insufficient. CWO. | 3 |
| (iv) <br> (A) | either Time is $\frac{20}{7} \mathrm{~s}$ by symmetry so $15.75 \times \frac{20}{7}=45$ so 45 m <br> or Hit ground at same time. By symmetry one travels 60 m so the other travels 15 m in this time ( $\frac{1}{4}$ speed) so 45 m . | B1 <br> B1 <br> B1 <br> B1 | Symmetry or uvast FT their (iii) with $t=\frac{20}{7}$ <br> [SC1 if 90 m seen] | 2 |
| (B) | see next page |  |  |  |


| Q7 | continued |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (B) | $\begin{aligned} & \text { either } \\ & \text { Time to fall is } 40-10=0.5 \times 9.8 \times t^{2} \\ & \\ & t=2.47435 \ldots \\ & \text { need } 15.75 \times 2.47435 . .=38.971 . . \text { so } \\ & 39.0(3 \mathrm{sf}) \\ & \text { or } \\ & \text { Need time so } 10=28 t-4.9 t^{2} \\ & 4.9 t^{2}-28 t+10=0 \\ & \text { so } t=28+\sqrt{28^{2}-4.449 \times 10} 9 \\ & \text { so } 0.382784 \ldots \text { or } 5.33150 \ldots \end{aligned}$ <br> Time required is $5.33150 \ldots-\frac{20}{7}=$ 2.47435.. $\text { need } 15.75 \times 2.47435 . .=38.971 . \text { so }$ $39.0 \text { (3sf) }$ | A1 <br> A1 <br> A1 <br> F1 <br> M1 <br> M1* <br> A1 <br> M1 <br> F1 | [SC1 if either and or methods mixed to give $\left. \pm 30=28 t-4.9 t^{2} \text { or } \pm 10=4.9 t^{2}\right]$ <br> Considering time from explosion with $u=0$. <br> Condone sign errors. <br> LHS. Allow $\pm 30$ <br> All correct <br> cao <br> FT their (iii) only. <br> Equating $28 t-4.9 t^{2}= \pm 10$ <br> Dep. Attempt to solve quadratic by a method that could give two roots. <br> Larger root correct to at least 2 s . f. <br> Both method marks may be implied from two correct roots alone (to at least 1 s . f.). <br> [SC1 for either root seen WW] <br> FT their (iii) only. | 5 |
| (v) | Horiz ( $x=$ ) 21t <br> Elim $t$ between $x=21 t$ and $y=28 t-4.9 t^{2}$ <br> so $y=28\left(\frac{x}{21}\right)-4.9\left(\frac{x}{21}\right)^{2}$ <br> so $y=\frac{4 x}{3}-\frac{0.1 x^{2}}{9}=\frac{1}{90}\left(120 x-x^{2}\right)$ | B1 <br> M1 <br> A1 <br> E1 | Intention must be clear, with some attempt made. <br> $t$ completely and correctly eliminated from their expression for $x$ and correct $y$. Only accept wrong notation if subsequently explicitly given correct value <br> e.g. $\frac{x^{2}}{21}$ seen as $\frac{x^{2}}{411}$. <br> Some simplification must be shown. <br> [SC2 for 3 points shown to be on the curve. Award more only if it is made clear that (a) trajectory is a parabola (b) 3 points define a parabola] |  |
|  |  | 19 |  |  |

