January 2008

Q1 (i)	Mode = 7 Median = 12.5	B1 cao B1 cao	2
		54	
(11)	POSITIVE or positively skewed	E1	1
(iii)			2
(,	(B) There is a large outlier or possible outlier of 58 / figure of 58.	Elindep	-
	Just 'outlier' on its own without reference to either 58 or large scores E0		
	Accept the large outlier affects the mean (more) E1		
(1)			~
(1V)	Inere are $14.75 \times 28 = 413$ messages So total cost = 413×10 pence = 541.30	can also imply the mark	2
	$50 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ $	A1 cao	
		TOTAL	7
Q2	$\begin{pmatrix} 4 \\ \end{pmatrix}$ 21 4 6 24 and a $\frac{4}{10}$ 24 and $\frac{4}{10}$		
(i)	$\binom{3}{3} \times 3! = 4 \times 6 = 24$ codes or $P_3 = 24$ (M2 for P_3)	M1 for 4	•
	Or $4 \times 3 \times 2 = 24$	A1	3
(;;)		M1 for 4^3	
(")	$4^3 = 64$ codes	A1 cao	2
		TOTAL	5
Q3			-
(1)	Probability = $0.3 \times 0.8 = 0.24$	A1 10.8 from $(1-0.2)$	2
	Either: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	M1 for adding 0.3 and	
(ii)		0.2	
	= 0.3 + 0.2 - 0.3 × 0.2	M1 for subtraction of	
	= 0.5 - 0.06 = 0.44	(0.3 × 0.2) A1 cao	
	<i>Or:</i> $P(AUB) = 0.7 \times 0.2 + 0.3 \times 0.8 + 0.3 \times 0.2$	M1 either of first terms	~
	= 0.14 + 0.24 + 0.06 = 0.44	A1	3
	$Or: P(AUB) = 1 - P(A' \cap B')$	M1 for 0.7×0.8 or	
	$= 1 - 0.7 \times 0.8 = 1 - 0.56 = 0.44$	M1 for complete	
		method as seen	
		A1	
(111)	$P(A B) = \frac{P(A \cap B)}{B} = \frac{0.06}{B} = \frac{6}{B} = 0.136$	M1 for numerator of	2
	P(B) = 0.44 - 44	M1 for 'their 0.44' in	ა
		denominator	
		A1 FT (must be valid	
		ΤΟΤΑΙ	8
L	l	IUIAL	-

Mark Scheme

Q4 (i)	$E(X) = 1 \times 0.2 + 2 \times 0.16 + 3 \times 0.128 + 4 \times 0.512 = 2.952$ Division by 4 or other spurious value at end loses A mark $E(X^{2}) = 1 \times 0.2 + 4 \times 0.16 + 9 \times 0.128 + 16 \times 0.512 = 10.184$ Var(X) = 10.184 - 2.952 ² = 1.47 (to 3 s.f.)	M1 for Σ <i>rp</i> (at least 3 terms correct) A1 cao M1 for $\Sigma x^2 p$ at least 3 terms correct M1 for E(X^2) – E(X) ² Provided ans > 0 A1 FT their E(X) but not a wrong E(X^2)	5
(ii)	Expected cost = 2.952 × £45000 = £133000 (3sf)	B1 FT (no extra multiples / divisors introduced at this stage)	1
(iii)		G1 labelled linear scales G1 height of lines	2
		TOTAL	8
Q5 (i)	Impossible because the competition would have finished as soon as Sophie had won the first 2 matches	E1	1
(ii)	SS, JSS, JSJSS	B1, B1, B1 (-1 each error or omission)	3
(iii)	$0.7^2 + 0.3 \times 0.7^2 + 0.7 \times 0.3 \times 0.7^2 = 0.7399$ or 0.74(0) { 0.49 + 0.147 + 0.1029 = 0.7399}	M1 for any correct term M1 for any other correct term M1 for sum of all three correct terms A1 cao	4
		IOTAL	5

	Section B		
Q6 (i)	Mean = $\frac{180.6}{12}$ = 15.05 or 15.1	B1 for mean	
	$S_{xx} = 3107.56 - \frac{180.6^2}{12}$ or $3107.56 - 12$ (their 15.05) ² =	M1 for attempt at S_{xx}	
	(389.53)		3
	$s = \sqrt{\frac{389.53}{11}} = 5.95$ or better	A1 cao	
(ii)	NB Accept answers seen without working (from calculator) $\overline{x} + 2s = 15.05 + 2 \times 5.95 = 26.95$	M1 for attempt at either	
(,	$\overline{x} - 2s = 15.05 - 2 \times 5.95 = 3.15$ So no outliers	M1 for both A1 for limits and	
		conclusion FT their mean and sd	3
(iii)	New mean = $1.8 \times 15.05 + 32 = 59.1$	B1FT	
	New s = 1.8 × 5.95 = 10.7	M1 A1FT	3
(iv)	New York has a higher mean or ' is on average' higher (oe)	E1FT using ⁰ F (\overline{x} dep)	
	New York has greater spread /range /variation or SD (oe)	E1FT using ${}^{0}F$ (σ dep)	2
(v)		P1 for all correct	
	Upper bound (70) 100 110 120 150 170 190 Cumulative frequency (0) 6 14 24 35 45 48	cumulative frequencies (may be implied from graph). <u>Ignore cf of 0</u> <u>at this stage</u>	
	ative frequency 20 40 40 40 40 40 40 40 40 40 40 40 40 40	G1 for linear scales (linear from 70 to 190) ignore x < 70 vertical: 0 to 50 but not beyond 100 (no inequality scales)	
	T D D D D D D D D	G1 for labels G1 for points plotted as (UCB, their cf). <u>Ignore</u> (70,0) at this stage. No mid – point or LCB plots	5
(vi)	NB all G marks dep on attempt at cumulative frequencies. NB All G marks dep on attempt at cumulative frequencies	G1 for joining all of 'their points'(line or smooth curve) AND now including (70,0)	2
	Line on graph at cf = 43.2(soi) or used 90th percentile = 166	M1 for use of 43.2 A1FT but dep on 3rd G mark earned	
		TOTAL	18

4766

Q7	<i>X</i> ~ B(12, 0.05)		
(i)	(A) $P(X = 1) = {\binom{12}{1}} \times 0.05 \times 0.95^{11} = 0.3413$	M1 0.05×0.95^{11}	
	(1) OR from tables $0.8816 - 0.5404 = 0.3412$ (B) $P(X \ge 2) = 1 - 0.8816 = 0.1184$	M1 $\binom{12}{1} \times pq^{11}(p+q) =$ 1 A1 cao OR: M1 for 0.8816 seen and M1 for subtraction of 0.5404 A1 cao M1 for 1 - P(X \le 1) A1 cao	3 2 2
	(C) Expected number $E(X) = np = 12 \times 0.05 = 0.6$	M1 for 12×0.05 A1 cao (= 0.6 seen)	
(ii)	Either: $1 - 0.95^n \leq \frac{1}{3}$	M1 for equation in <i>n</i>	
	$n \le \log \frac{2}{3}$ /log0.95, so $n \le 7.90$ Maximum $n = 7$	M1 for use of logs A1 cao	
	<i>Or:</i> (using tables with $p = 0.05$): n = 7 leads to $P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6983 = 0.3017 (< \frac{1}{3})$ or $0.6983 (> \frac{2}{3})$ n = 8 leads to $P(X \ge 1) = 1 - P(X = 0) = 1 - 0.6634 = 0.3366 (> \frac{1}{3})$ or $0.6634 (< \frac{2}{3})$ Maximum $n = 7$ (total accuracy needed for tables)	M1indep M1indep A1 cao dep on both M's	3
	Or: (using trial and improvement):		
	$1 - 0.95^7 = 0.3017 (< \frac{1}{3}) \text{ or } 0.95^7 = 0.6983 (> 2/3)$ $1 - 0.95^8 = 0.3366 (> \frac{1}{3}) \text{ or } 0.96^8 = 0.6634 (< 2/3)$ Maximum $n = 7$ (3 sf accuracy for calculations)	M1indep (as above) M1indep (as above) A1 cao dep on both M's	
	NOTE: $n = 7$ unsupported scores SC1 only		
(iii)	Let $X \sim B(60, p)$ Let p = probability of a bag being faulty H ₀ : $p = 0.05$ H ₁ : $p < 0.05$	B1 for definition of p B1 for H ₀ B1 for H ₁	8
	$P(X \le 1) = 0.95^{60} + 60 \times 0.05 \times 0.95^{59} = 0.1916 > 10\%$	M1 A1 for probability M1 for comparison	
	So not enough evidence to reject H ₀	A1	
	Conclude that there is not enough evidence to indicate that the new process reduces the failure rate or scientist incorrect/ wrong.	E1	
		TOTAL	18