4751 (C1) Introduction to Advanced Mathematics

Section A						
1	(i) 0.125 or 1/8 (ii) 1	1 1	as final answer	2		
2	y = 5x - 4 www	3	M2 for $\frac{y-11}{-9-11} = \frac{x-3}{-1-3}$ o.e. or M1 for grad $= \frac{11-(-9)}{3-(-1)}$ or 5 eg in y = 5x + k and M1 for $y - 11 =$ their $m(x - 3)$ o.e. or subst (3, 11) or (-1, -9) in y = their $mx + c$ or M1 for $y = kx - 4$ (eg may be found by drawing)	3		
3	x > 9/6 o.e. or $9/6 < x$ o.e. www isw	3	M2 for $9 < 6x$ or M1 for $-6x < -9$ or $k < 6x$ or $9 < kx$ or $7 + 2 < 5x + x$ [condone \leq for Ms]; if 0, allow SC1 for 9/6 o.e found	3		
4	a = -5 www	3	M1 for $f(2) = 0$ used and M1 for $10 + 2a = 0$ or better long division used: M1 for reaching $(8 + a)x - 6$ in working and M1 for $8 + a = 3$ equating coeffts method: M2 for obtaining $x^3 + 2x^2 + 4x + 3$ as other factor	3		
5	(i) $4[x^3]$	2	ignore any other terms in expansion M1 for $-3[x^3]$ and $7[x^3]$ soi;			
	(ii) 84[<i>x</i> ²] www	3	M1 for $\frac{7 \times 6}{2}$ or 21 or for Pascal's triangle seen with 1 7 21 row and M1 for 2 ² or 4 or $\{2x\}^2$	5		

20

6	1/5 or 0.2 o.e. www	3	M1 for $3x + 1 = 2x \times 4$ and	
U	1/5 01 0.2 0.C. www	5	M1 for $5x + 1 = 2x \times 4$ and M1 for $5x = 1$ o.e.	
			or	
			M1 for $1.5 + \frac{1}{2x} = 4$ and	
			M1 for $\frac{1}{2x} = 2.5$ o.e.	3
7	(i) $5^{3.5}$ or $k = 3.5$ or $7/2$ o.e.	2	M1 for $125 = 5^3$ or $\sqrt{5} = 5^{\frac{1}{2}}$	
			SC1 for $5^{\frac{3}{2}}$ o.e. as answer without working	
	(ii) $16a^6b^{10}$	2	M1 for two 'terms' correct and multiplied; mark final answer only	4
8	$b^2 - 4ac$ soi	M1	allow in quadratic formula or clearly looking for perfect square	
	$k^2 - 4 \times 2 \times 18 < 0$ o.e.	M1	condone ≤; or M1 for 12 identified as boundary	
	-12 < k < 12	A2	may be two separate inequalities; A1 for \leq used or for one 'end' correct	
			if two separate correct inequalities seen, isw for then wrongly combining them	
			into one statement; condone <i>b</i> instead of <i>k</i> ;	
			if no working, SC2 for $k < 12$ and SC2 for $k > -12$ (ie SC2 for each 'end'	4
9	y + 5 = xy + 2x	M1	correct) for expansion	
-	y - xy = 2x - 5 oe or ft	M1	for collecting terms	
	y(1-x) = 2x - 5 oe or ft	M1	for taking out y factor; dep on xy term	
	$[y=]\frac{2x-5}{1-x}$ oe or ft as final answer	M1	for division and no wrong work after	
	1-x		ft earlier errors for equivalent steps if	
			error does not simplify problem	4
10	(i) 9 √3	2	M1 for $5\sqrt{3}$ or $4\sqrt{3}$ seen	
	(ii) $6 + 2\sqrt{2}$ www	3	M1 for attempt to multiply num. and	
			denom. by $3 + \sqrt{2}$ and M1 for denom. 7	
			or 9 – 2 soi from denom. mult by $3 + \sqrt{2}$	5

Section B

Sect	ion B				
11	i	C, mid pt of AB = $\left(\frac{11+(-1)}{2}, \frac{4}{2}\right)$ = (5, 2)	B1	evidence of method required – may be on diagram, showing equal steps, or start at A or B and go half the difference towards the other	
		$[AB^{2} =] 12^{2} + 4^{2} [= 160]$ oe or $[CB^{2} =] 6^{2} + 2^{2} [=40]$ oe with AC	B1	or square root of these; accept unsimplified	
		quote of $(x - a)^2 + (y - b)^2 = r^2$ o.e with different letters	B1	or (5, 2) clearly identified as centre and $\sqrt{40}$ as <i>r</i> (or 40 as r^2) www or quote of <i>gfc</i> formula and finding c = -11	
		completion (ans given)	B1	dependent on centre (or midpt) and radius (or radius ²) found independently and correctly	4
	ii	correct subst of $x = 0$ in circle eqn	M 1		
		soi $(y-2)^2 = 15 \text{ or } y^2 - 4y - 11 [= 0]$ $y-2 = \pm \sqrt{15} \text{ or ft}$ $[y=]2 \pm \sqrt{15} \text{ cao}$	M1 M1 A1	condone one error or use of quad formula (condone one error in formula); ft only for 3 term quadratic in y if $y = 0$ subst, allow SC1 for (11, 0) found	
				alt method: M1 for y values are $2 \pm a$ M1 for $a^2 + 5^2 = 40$ soi M1 for $a^2 = 40 - 5^2$ soi A1 for $[y =]2 \pm \sqrt{15}$ cao	4
	iii	grad AB = $\frac{4}{11 - (-1)}$ or 1/3 o.e.	M1	or grad AC (or BC)	
		so grad tgt = -3 eqn of tgt is $y - 4 = -3 (x - 11)$	M1 M1	or ft -1 /their gradient of AB or subst (11, 4) in $y = -3x + c$ or ft (no ft for their grad AB used)	
		y = -3x + 37 or $3x + y = 37(0, 37) and (37/3, 0) o.e. ft isw$	A1 B2	accept other simplified versions B1 each, ft their tgt for grad $\neq 1$ or 1/3; accept $x = 0$, $y = 37$ etc	
				NB alt method: intercepts may be found first by proportion then used to find eqn	6

			r		
12	i	$3x^2 + 6x + 10 = 2 - 4x$	M1	for subst for <i>x</i> or <i>y</i> or subtraction	
		2^{2} , 10, . 9 [0]	1.1	attempted 2^{2} 52 + 220 f ol f	
		$3x^2 + 10x + 8 = 0$	M1	or $3y^2 - 52y + 220$ [=0]; for	
				rearranging to zero (condone one	
			2.64	error)	
		(3x+4)(x+2) [=0]	M1	or $(3y - 22)(y - 10)$; for sensible	
				attempt at factorising or formula or	
				completing square	
		x = -2 or $-4/3$ o.e.	A1	or A1 for each of $(-2, 10)$ and	
		y = 10 or 22/3 o.e.	A1	(-4/3, 22/3) o.e.	5
	ii	$3(x+1)^2 + 7$	4	1 for $a = 3$, 1 for $b = 1$, 2 for $c = 7$ or	
		$S(x+1) + \gamma$		M1 for $10 - 3 \times$ their b^2 soi or for 7/3	
				or for $10/3$ – their b^2 soi	4
					•
	iii	min at $y = 7$ or ft from (ii) for	B2	may be obtained from (ii) or from	
		positive c (ft for (ii) only if in		good symmetrical graph or identified	
		correct form)		from table of values showing	
		,		symmetry	
				condone error in <i>x</i> value in stated min	
				ft from (iii) [getting confused with 3 factor]	
				B1 if say turning pt at $y = 7$ or ft	
				without identifying min	
				or M1 for min at $x = -1$ [e.g. may	
				start again and use calculus to obtain	
				$x = -1$] or min when $(x + 1)^{[2]} = 0$;	
				and A1 for showing y positive at min	
				or M1 for showing discriminant neg.	
				so no real roots and A1 for showing	
				above axis not below eg positive x^2	
				term or goes though (0, 10)	
				or M1 for stating bracket squared	
				must be positive [or zero] and A1 for	
				saying other term is positive	2
				saying other term is positive	~
L					

13	i	any correct <i>y</i> value calculated from quadratic seen or implied by plots	B1	for $x \neq 0$ or 1; may be for neg x or eg min.at (2.5, -1.25)	
		(0, 5)(1, 1)(2, -1)(3, -1)(4, 1) and $(5, 5)$ plotted	P2	tol 1 mm; P1 for 4 correct [including $(2.5, -1.25)$ if plotted]; plots may be implied by curve within 1 mm of correct position	
		good quality smooth parabola within 1mm of their points	C1	allow for correct points only	
				[accept graph on graph paper, not insert]	4
	ii	$x^{2}-5x+5 = \frac{1}{x}$ $x^{3}-5x^{2}+5x = 1$ and completion	M1		
		$x^{3} - 5x^{2} + 5x = 1$ and completion to given answer	M1		2
	iii	divn of $x^3 - 5x^2 + 5x - 1$ by $x - 1$ as far as $x^3 - x^2$ used in working	M1	or inspection eg $(x - 1)(x^2+1)$ or equating coeffts with two correct coeffts found	
		$x^2 - 4x + 1$ obtained	A1		
		use of $b^2 - 4ac$ or formula with quadratic factor	M1	or $(x-2)^2 = 3$; may be implied by correct roots or $\sqrt{12}$ obtained	
		$\sqrt{12}$ obtained and comment re shows other roots (real and) irrational	A2	[A1 for $\sqrt{12}$ and A1 for comment]	
		or for $2\pm\sqrt{3}$ or $\frac{4\pm\sqrt{12}}{2}$ obtained isw		NB A2 is available only for correct quadratic factor used; if wrong factor used, allow A1 ft for obtaining two irrational roots or for their discriminant and comment re	
				irrational [no ft if their discriminant is negative]	5