4752 (C2) Concepts for Advanced Mathematics

Section A

1	$4x^5$	1		
	$-12x^{-\frac{1}{2}}$		M1 for other $kx^{-\frac{1}{2}}$	
		2	M1 for other kx^2	
	+ <i>c</i>	1		4
2	95.25, 95.3 or 95	4	M3	
			½×5×(4.3+0+2[4.9+4.6+3.9+2.3+1.2])	
			M2 with 1 error, M1 with 2 errors.	
			Or M3 for 6 correct trapezia.	4
3	1.45 o.e.	2	M1 for $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$ oe	2
4	105 and 165	3	B1 for one of these or M1 for $2x = 210$	
			or 330	3
5	(i) graph along $y = 2$ with V at	2	M1 for correct V, or for $f(x+2)$	
	(3,2) (4,1) & (5,2)			
	(ii) graph along $y = 6$ with V at	2	B1 for (2,k) with all other elements	
	(1,6) (2,3) & (3,6)		correct	4
6	(i) 54.5	2	B1 for $d = 2.5$	
	(ii) Correct use of sum of AP	M1	$\underline{\text{or}}$ M2 for correct formula for S ₃₀ with	
	formula with $n = 50, 20, 19$ or 21		their d	
	with their d and $a = 7$ eg $S_{50} =$		M1 if one slip	
	$3412.5, S_{20} = 615$			
	Their C C demon use of an	M1		
	Their $S_{50} - S_{20}$ dep on use of ap formula	IVII		
	Tormura			
	2797.5 c.a.o.	A1		5
7	2797.5 c.a.o. $8x - x^{-2}$ o.e.	2	B1 each term	
	their $\frac{dy}{dx} = 0$	M1	s.o.i.	5
	correct step	DM1	s.o.i.	
	$x = \frac{1}{2}$ c.a.o.	A1		
	, 2 3 3 3 3			
8	(i) 48	1		
	geometric, or GP	1		
	(ii) mention of $ r < 1$ condition o.e.	1	M1 for 192	
	S = 128	2	M1 for $\frac{192}{1-\frac{1}{2}}$	5
			- 2	
9	(i) 1	1		
			a et ard	
	(ii) (A) 3.5 log _a x	2	M1 for correct use of 1 st or 3 rd law	
	(") (P) 1	1		
	(ii) (B) $-\log_a x$	1		4

Section B

10	i	7-2x	M1		
		x = 2, gradient = 3	A1	differentiation must be used	
		x = 2, y = 4	B1		
		y – their 4 = their grad $(x - 2)$	M1	or use of $y = \text{their } mx + c$ and subst (2, their 4), dependent on diffn	
		subst $y = 0$ in their linear eqn	M1	seen	
		completion to $x = \frac{2}{3}$ (ans given)	A1		6
	ii	f(1) = 0 or factorising to	1	or using quadratic formula	
		(x-1)(6-x) or $(x-1)(x-6)$		correctly to obtain $x = 1$	
		6 www	1		2
	iii	$\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$	M1	for two terms correct; ignore $+c$	
		1 2 3	3.61		
		value at 2 – value at 1	M1	ft attempt at integration only	
		$2\frac{1}{6}$ or 2.16 to 2.17	A1		
		$\frac{1}{2} \times \frac{4}{3} \times 4$ – their integral	M1		
		0.5 o.e.	A1		5
			AI		3
11	i(A)	150 (cm) or 1.5 m	2	M1 for 2.5×60 or 2.5×0.6 or for	
				1.5 with no units	2
	i (B)	$\frac{1}{2} \times 60^2 \times 2.5 \text{ or } 4500$	M1	or equivalents in m ²	
	I(D)	$\frac{72 \times 60^{\circ} \times 2.3 \text{ of } 4300}{\frac{1}{2} \times 140^{2} \times 2.5 \text{ or } 24500}$	M1	or equivalents in in	
		subtraction of these	DM1		
		20 000 (cm ²) isw	A1	or 2 m ²	4
	::(A)	attament at was of assing mile	M1		
	ii(A)	attempt at use of cosine rule	IVII	condone 1 error in substitution	
		$3.5^2 + 2.8^2 - 1.6^2$			
		$\cos EFP = \frac{38 \times 2.8 \times 3.5}{2 \times 2.8 \times 3.5}$ o.e.	M1		
		26.5 to 26.65 or 27	A1		3
	#(D)	2.9 sin (their EED) s	M1		
	ii(B)	2.8 sin (their EFP) o.e. 1.2 to 1.3 [m]	M1 A1		2
		1.2 to 1.0 [m]	111		

12	i	$\log a + \log (b')$ www	B1	condone omission of base	
		clear use of $\log(b^t) = t \log b \operatorname{dep}$	B1	throughout question	2
	ii	(2.398), 2.477, 2.556, 2.643, 2.724 points plotted correctly f.t. ruled line of best fit f.t.	T1 P1 1	On correct square	3
	iii	$\log a = 2.31 \text{ to } 2.33$	M1	ft their intercept	
		a = 204 to 214	A1		
		$\log b = 0.08 \text{ approx}$	M1	ft their gradient	4
		b = 1.195 to 1.215	A1		4
	iv	eg £210 million dep	1	their £ a million	1
	v	$\log 1000$ – their intercept $\approx 3 - 2.32$	M1		
		their gradient ~ 0.08 = 8.15 to 8.85	A1	or B2 from trials	2