4722 Core Mathematics 2

1 (i) $\int\left(x^{3}+8 x-5\right) \mathrm{d} x=\frac{1}{4} x^{4}+4 x^{2}-5 x+c$
M1 Attempt integration - increase in power for at least 2 terms
A1 Obtain at least 2 correct terms
A1 3 Obtain $\frac{1}{4} x^{4}+4 x^{2}-5 x+c$ (and no integral sign or $\mathrm{d} x$)
(ii) $\int 12 x^{\frac{1}{2}} \mathrm{~d} x=8 x^{\frac{3}{2}}+c$

B1 State or imply $\sqrt{x}=x^{\frac{1}{2}}$
M1 Obtain $k x^{\frac{3}{2}}$
A1 3 Obtain $8 x^{\frac{3}{2}}+c$ (and no integral sign or $\mathrm{d} x$)
(only penalise lack of $+c$, or integral sign or $d x$ once)

6

2 (i) $140^{\circ}=140 \times \frac{\pi}{180} \quad$ M1

$$
=\frac{7}{9} \pi
$$

A1 2 Obtain $\frac{7}{9} \pi$, or exact equiv
(ii) $\operatorname{arc} A B=7 \times \frac{7}{9} \pi$

$$
=17.1
$$

chord $A B=2 \times 7 \sin \frac{7}{18} \pi=13.2$
hence perimeter $=30.3 \mathrm{~cm}$

M1
A1 $\sqrt{ }$
M1

A1 4 Obtain 30.3, or answer that rounds to this
Attempt arc length using $r \theta$ or equiv method
Obtain 17.1, $\frac{49}{9} \pi$ or unsimplified equiv
Attempt chord using trig. or cosine or sine rules

6

3 (i) $u_{1}=23^{1 / 3}$
B1 State $u_{1}=23^{1} / 3$
$u_{2}=22^{2} / 3, u_{3}=22$
B1
2 State $u_{2}=22^{2} / 3$ and $u_{3}=22$
(ii) $24-2 k / 3=0$
M1
Equate u_{k} to 0
2 Obtain 36
(iii) $S_{20}=\frac{20}{2}\left(2 \times 23 \frac{1}{3}+19 \times \frac{-2}{3}\right)$

$$
=340
$$

M1
A1 A1

$\begin{array}{ll} 3 \text { (i) } \quad & u_{1}=23^{1} / 3 \\ & u_{2}=22^{2} / 3, u_{3}=22 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	State $u_{1}=23^{1 / 3}$ State $u_{2}=22^{2} / 3$ and $u_{3}=22$
(ii) $\quad \begin{aligned} & 24-2 k / 3=0 \\ & k=36\end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Equate u_{k} to 0 Obtain 36
$\text { (iii) } \begin{aligned} S_{20} & =\frac{20}{2}\left(2 \times 23 \frac{1}{3}+19 \times \frac{-2}{3}\right) \\ & =340 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Attempt sum of AP with $n=20$ Correct unsimplified S_{20} Obtain 340

7

Attempt integration - increase of power for at least 1 term
Obtain correct $\frac{1}{5} x^{5}+3 x$
Use limits (any two of $-2,0,2$), correct order/subtraction
Obtain $24 \frac{4}{5}$
State or imply correct area of rectangle
Attempt correct method for shaded area
7 Obtain $51 \frac{1}{5}$ aef such as 51.2, $\frac{256}{5}$
Attempt subtraction, either order
Obtain $16-x^{4}$ (not from $\left.x^{4}+3=19\right)$
Attempt integration
Obtain $\pm\left(16 x-\frac{1}{5} x^{5}\right)$

$$
\begin{array}{lll}
=\left(32-\frac{32}{5}\right)-\left(-32-\frac{-32}{5}\right) & \text { M1 } & \text { Use limits }- \text { correct order / subtraction } \\
=51 \frac{1}{5} & \text { A1 } & \text { Obtain } \pm 51 \frac{1}{5} \\
& \text { A1 } & \text { Obtain } 51 \frac{1}{5} \text { only, no wrong working }
\end{array}
$$

M1 Attempt use of correct sine rule to find $T A$, or equiv
A1 2 Obtain 914, or better

5 (i) $\frac{T A}{\sin 107}=\frac{50}{\sin 3}$
$T A=914 \mathrm{~m}$
(ii) $T C=\sqrt{914^{2}+150^{2}-2 \times 914 \times 150 \times \cos 70}$

$$
=874 \mathrm{~m}
$$

(iii) dist from $A=914 \mathrm{x} \cos 70=313 \mathrm{~m}$ beyond C, hence 874 m is shortest dist
OR
perp dist $=914 \times \sin 70=859 \mathrm{~m}$

M1 Attempt use of correct cosine rule, or equiv, to find TC
A1 $\sqrt{ } \quad$ Correct unsimplified expression for TC, following their (i)
A1 3 Obtain 874, or better
M1 Attempt to locate point of closest approach
A1 2 Convincing argument that the point is beyond C, or obtain 859 , or better
SR B1 for 874 stated with no method shown

6 (i) $\quad \begin{aligned} S_{\infty} & =\frac{20}{1-0.9} \\ & =200\end{aligned}$
M1 Attempt use of $S_{\infty}=\frac{a}{1-r}$
A1 2 Obtain 200
(ii) $S_{30}=\frac{20\left(1-0.9^{30}\right)}{1-0.9}$

$$
=192
$$

M1 Attempt use of correct sum formula for a GP, with $n=30$
A1 2 Obtain 192, or better

(iii) \begin{tabular}{lll}
$20 \times 0.9^{p-1}<0.4$ \& B1 \& Correct $20 \times 0.9^{p-1}$ seen or implied

$0.9^{p-1}<0.02$ \& \&

$(p-1) \log 0.9<\log 0.02$ \& M1 \& Link to 0.4, rearrange to $0.9^{k}=c$ (or $>,<$), introduce

$p-1>\frac{\log 0.02}{\log 0.9}$ \& \& logarithms, and drop power, or equiv correct method

$p>38.1$ \& M1 \& | Correct method for solving their (in)equation |
| :--- |

hence $p=39$ \& A1 \& 4

State 39 (not inequality), no wrong working seen
\end{tabular}

8

(ii) $4 k^{3} a=128$
$4 k^{3}\left(\frac{2}{k}\right)=128$
$k^{2}=16$
$k=4, a=\frac{1}{2}$

M1* Obtain at least two of $6, k^{2}, a^{2}$
M1dep* Equate $6 k^{m} a^{n}$ to 24
A1 3 Show $a k=2$ convincingly - no errors allowed

B1 State or imply coeff of x is $4 k^{3} a$
M1 Equate to 128 and attempt to eliminate a or k
A1 \quad Obtain $k=4$
A1 4 Obtain $a=1 / 2$
SR B1 for $k= \pm 4, a= \pm \frac{1}{2}$
(iii) $4 \times 4 \times\left(\frac{1}{2}\right)^{3}=2$

M1 Attempt $4 \times k \times a^{3}$, following their a and k (allow if still in terms of a, k)
A1 2 Obtain 2 (allow $2 x^{3}$)
8 (a)(i) $\log _{a} x y=p+q$
B1 $1 \quad$ State $p+q$ cwo
(ii) $\log _{a}\left(\frac{a^{2} x^{3}}{y}\right)=2+3 p-q$

M1 Use $\log a^{b}=b \log a$ correctly at least once
M1 Use $\log \frac{a}{b}=\log a-\log b$ correctly
A1 3 Obtain $2+3 p-q$
(b)(i) $\log _{10} \frac{x^{2}-10}{x}$

B1 $1 \quad$ State $\log _{10} \frac{x^{2}-10}{x}$ (with or without base 10)
(ii) $\log _{10} \frac{x^{2}-10}{x}=\log _{10} 9$
$x^{2}-9 x-10=0$
$(x-10)(x+1)=0$
$x=10$
$\frac{x^{2}-10}{x}=9 \quad$ M1
A1
B1 State or imply that $2 \log _{10} 3=\log _{10} 3^{2}$
M1 Attempt correct method to remove logs
A1 Obtain correct $x^{2}-9 x-10=0$ aef, no fractions
A1
Attempt to solve three term quadratic
5 Obtain $x=10$ only

9 (i) $\mathrm{f}(1)=1-1-3+3=0 \quad$ A.G.
$\mathrm{f}(x)=(x-1)\left(x^{2}-3\right)$
$x^{2}=3$
$x= \pm \sqrt{3}$

$$
\text { (ii) } \begin{aligned}
\tan x & =1, \sqrt{3},-\sqrt{3} \\
\tan x & =\sqrt{3} \Rightarrow x=\pi / 3,4 \pi / 3 \\
\tan x & =-\sqrt{3} \Rightarrow x=2 \pi / 3,5 \pi / 3 \\
\tan x & =1 \Rightarrow x=\pi / 4,5 \pi / 4
\end{aligned}
$$

B1 Confirm $f(1)=0$, or division with no remainder shown, or matching coeffs with $R=0$
M1 Attempt complete division by $(x-1)$, or equiv
A1 Obtain $x^{2}+k$
A1 Obtain completely correct quotient (allow $x^{2}+0 x-3$)
M1
Attempt to solve $x^{2}=3$
6 Obtain $x= \pm \sqrt{3}$ only

B1 $\sqrt{ }$

M1
A1
A1
B1
B1

State or imply $\tan x=1$ or $\tan x=$ at least one of their roots from (i)
Attempt to solve $\tan x=k$ at least once
Obtain at least 2 of $\pi / 3,2 \pi / 3,4 \pi / 3,5 \pi / 3$ (allow degs/decimals)
Obtain all 4 of $\pi / 3,2 \pi / 3,4 \pi / 3,5 \pi / 3$ (exact radians only)
Obtain $\pi / 4$ (allow degs / decimals)
6 Obtain $5 \pi / 4$ (exact radians only)
SR answer only is B1 per root, max of B4 if degs / decimals

