4722 Core Mathematics 2

1 (i) $\int (x^3 + 8x - 5) dx = \frac{1}{4}x^4 + 4x^2 - 5x + c$	M1	Attempt integration – increase in power for at least 2 terms
J () 4	A1	Obtain at least 2 correct terms
	A1 3	Obtain $\frac{1}{4}x^4 + 4x^2 - 5x + c$ (and no integral sign or dx)
(ii) $\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}} + c$	B1	State or imply $\sqrt{x} = x^{\frac{1}{2}}$
J	M1	Obtain $kx^{\frac{3}{2}}$
	A1 3	b Obtain $8x^{\frac{3}{2}} + c$ (and no integral sign or dx)
		(only penalise lack of $+ c$, or integral sign or dx once)
	6	
2 (i) $140^\circ = 140 \times \frac{\pi}{180}$	M1	Attempt to convert 140° to radians
$=\frac{7}{9}\pi$	A1 2	2 Obtain $\frac{7}{9}\pi$, or exact equiv
(ii) arc $AB = 7 \times \frac{7}{9} \pi$	M1	Attempt arc length using $r\theta$ or equiv method
= 17.1	A1	Obtain 17.1, $\frac{49}{9}\pi$ or unsimplified equiv
chord $AB = 2 \times 7 \sin \frac{7}{18} \pi = 13.2$	M 1	Attempt chord using trig. or cosine or sine rules
hence perimeter = 30.3 cm	A1 4	Obtain 30.3, or answer that rounds to this
	6]
3 (i) $u_1 = 23^{1/3}$ $u_2 = 22^{2/3}$, $u_3 = 22$	B1 B1 2	State $u_1 = 23^{1/3}$ State $u_2 = 22^{2/3}$ and $u_3 = 22$
(ii) $24 - \frac{2k}{3} = 0$		Equate u_k to 0
(ii) $24 - 7_3 = 0$ k = 36	A1 2	
(iii) $S_{20} = \frac{20}{2} \left(2 \times 23 \frac{1}{3} + 19 \times \frac{-2}{3} \right)$	M1	Attempt sum of AP with $n = 20$
= 340	A1	Correct unsimplified S ₂₀
	A1 3	B Obtain 340
	7	
4 $\int_{-2}^{2} (x^4 + 3) dx = \left[\frac{1}{5}x^5 + 3x\right]_{-2}^{2}$	M1	Attempt integration – increase of power for at least 1 term
-2	A1	Obtain correct $\frac{1}{5}x^5 + 3x$
$=(\frac{32}{5}+6)-(\frac{-32}{5}-6)$	M1	Use limits (any two of -2, 0, 2), correct order/subtraction
$= 24\frac{4}{5}$	A1	Obtain $24\frac{4}{5}$
area of rectangle = 19×4	B1	State or imply correct area of rectangle
hence shaded area = $76 - 24\frac{4}{5}$	M1	Attempt correct method for shaded area
$=51\frac{1}{5}$	A1 7	Obtain $51\frac{1}{5}$ aef such as 51.2, $\frac{256}{5}$
OR	M1	Attempt subtraction, either order
Area = $19 - (x^4 + 3)$		
Area = $19 - (x^4 + 3)$ = $16 - x^4$	A1	Obtain $16 - x^4$ (not from $x^4 + 3 = 19$)
Area = 19 - (x ⁴ + 3) = 16 - x ⁴ $\int_{-2}^{2} (16 - x^{4}) dx = [16x - \frac{1}{5}x^{5}]_{-2}^{2}$	A1 M1	Obtain $16 - x^4$ (not from $x^4 + 3 = 19$) Attempt integration

	$=(32-\frac{32}{5})-(-32-\frac{-32}{5})$	M1		Use limits – correct order / subtraction
	$=51\frac{1}{5}$	A1		Obtain $\pm 51\frac{1}{5}$
		A1		Obtain $51\frac{1}{5}$ only, no wrong working
			7	Sound ST 5 only, no wrong working
5 (i)	$\frac{TA}{\sin 107} = \frac{50}{\sin 3}$	M1		Attempt use of correct sine rule to find TA, or equiv
	TA = 914 m	A1	2	Obtain 914, or better
(ii)	$TC = \sqrt{914^2 + 150^2 - 2 \times 914 \times 150 \times \cos 70}$	M1		Attempt use of correct cosine rule, or equiv, to find TC
	= 874 m	A1√ A1	3	Correct unsimplified expression for <i>TC</i> , following their (i) Obtain 874, or better
	_ 0/+ III			
(iii)		M1		Attempt to locate point of closest approach
OR	beyond C , hence 874 m is shortest dist	A1	2	Convincing argument that the point is beyond <i>C</i> , or obtain 859, or better
UN	perp dist = $914 \times \sin 70 = 859$ m			SR B1 for 874 stated with no method shown
			7	
6 (i)	$S_{\infty} = \frac{20}{1-0.9}$	M1		Attempt use of $S_{\infty} = \frac{a}{1-r}$
	= 200	A1	2	Obtain 200
(ii)	$S_{30} = \frac{20(1 - 0.9^{30})}{1 - 0.9}$	M1		Attempt use of correct sum formula for a GP, with $n = 30$
	1-0.9 = 192	A1	2	Obtain 192, or better
	$20 \times 0.9^{p-1} < 0.4$			
(iii)	$20 \times 0.9^{p-1} < 0.4$ $0.9^{p-1} < 0.02$	B1		Correct $20 \times 0.9^{p-1}$ seen or implied
	$(p-1)\log 0.9 < \log 0.02$	M1		Link to 0.4, rearrange to $0.9^k = c$ (or >, <), introduce
	$p-1 > rac{\log 0.02}{\log 0.9}$			logarithms, and drop power, or equiv correct method
	p > 38.1	M1		Correct method for solving their (in)equation
	hence $p = 39$	A1	4	State 39 (not inequality), no wrong working seen
			8	
			0	
7 (i)	$6k^2a^2 = 24$	M1*		Obtain at least two of 6, k^2 , a^2
	$k^2 a^2 = 4$ $ak = 2 \mathbf{A.G.}$	M1de A1	р* 3	Equate $6k^m a^n$ to 24 Show $ak = 2$ convincingly – no errors allowed
	$u\kappa - 2$ A.G.			
(ii)	$4k^3a = 128$	B1		State or imply coeff of x is $4k^3a$
	$4k^{3}\left(\frac{2}{k}\right) = 128$	M1		Equate to 128 and attempt to eliminate a or k
	$k^2 = 16$	A1		Obtain $k = 4$
	$k = 4$, $a = \frac{1}{2}$	A1	4	Obtain $a = \frac{1}{2}$
				SR B1 for $k = \pm 4$, $a = \pm \frac{1}{2}$
(iii)	$4 \times 4 \times \left(\frac{1}{2}\right)^3 = 2$	M1		Attempt $4 \times k \times a^3$, following their <i>a</i> and <i>k</i> (allow if still in
(111)	$\cdots \cdots (2) = 2$	1411		terms of a, k)
		A1	2	Obtain 2 (allow $2x^3$)
			9	

8 (a)(i	i) $\log_a xy = p + q$	B1	1	State $p + q$ cwo
(ii) $\log_{a}\left(\frac{a^{2}x^{3}}{y}\right) = 2 + 3p - q$	M1		Use $\log a^b = b \log a$ correctly at least once
	u	M1		Use $\log \frac{a}{b} = \log a - \log b$ correctly
		A1	3	Obtain $2 + 3p - q$
(b)(i	i) $\log_{10} \frac{x^2 - 10}{x}$	B1	1	State $\log_{10} \frac{x^2 - 10}{x}$ (with or without base 10)
(ii) $\log_{10} \frac{x^2 - 10}{x} = \log_{10} 9$	B1		State or imply that $2\log_{10} 3 = \log_{10} 3^2$
	$\frac{x^2-10}{x} = 9$	M1		Attempt correct method to remove logs
	$x^2 - 9x - 10 = 0$	A1		Obtain correct $x^2 - 9x - 10 = 0$ aef, no fractions
	(x-10)(x+1) = 0	M1		Attempt to solve three term quadratic
	<i>x</i> = 10	A1	5	Obtain $x = 10$ only
		1	10	
9 (i)	f(1) = 1 - 1 - 3 + 3 = 0 A.G.	B1		Confirm $f(1) = 0$, or division with no remainder shown, or matching coeffs with $R = 0$
	$f(x) = (x-1)(x^2-3)$	M1		Attempt complete division by $(x - 1)$, or equiv
		Al		Obtain $x^2 + k$
		A1		Obtain completely correct quotient (allow $x^2 + 0x - 3$)
	$x^2 = 3$	M1		Attempt to solve $x^2 = 3$
	$x = \pm \sqrt{3}$	A1	6	Obtain $x = \pm \sqrt{3}$ only
(ii)	$\tan x = 1, \sqrt{3}, -\sqrt{3}$	B1√		State or imply $\tan x = 1$ or $\tan x = $ at least one of their roots from (i)
	$\tan x = \sqrt{3} \Longrightarrow x = \pi/3, \ 4\pi/3$	M1		Attempt to solve $\tan x = k$ at least once
	$\tan x = -\sqrt{3} \Longrightarrow x = \frac{2\pi}{3}, \frac{5\pi}{3}$	A1		Obtain at least 2 of $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{5\pi}{3}$ (allow degs/decimals)
	$\tan x = 1 \Longrightarrow x = \frac{\pi}{4}, \frac{5\pi}{4}$	A1		Obtain all 4 of $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{5\pi}{3}$ (exact radians only)
		B1		Obtain $\frac{\pi}{4}$ (allow degs / decimals)
		B1	6	Obtain $\frac{5\pi}{4}$ (exact radians only) SR answer only is B1 per root, max of B4 if degs / decimals
		1	12	