4761 Mechanics 1

Q 1		Mark	Comment	Sub
(i)	6 m s^{-1} 4 m s ⁻²	B1 B1	Neglect units. Neglect units.	2
(ii)	$v(5) = 6 + 4 \times 5 = 26$ $s(5) = 6 \times 5 + 0.5 \times 4 \times 25 = 80$ so 80 m	B1 M1 A1	Or equiv. FT (i) and their $v(5)$ where necessary. cao	3
(iii)	distance is 80 + $26 \times (15-5) + 0.5 \times 3 \times (15-5)^2$ = 490 m	M1 M1 A1	Their 80 + attempt at distance with $a = 3$ Appropriate <i>uvast</i> . Allow $t = 15$. FT their v(5). cao	3
		8		

Q 2		Mark	Comment	Sub
(i)		M1	Recognising that areas under graph represent changes in velocity in (i) or (ii) or equivalent <i>uvast</i> .	
	When $t = 2$, velocity is $6+4 \times 2 = 14$	A1		2
(ii)	Require velocity of -6 so must inc by -20 $-8 \times (t-2) = -20$ so $t = 4.5$	M1 F1	FT \pm (6 + their 14) used in any attempt at area/ <i>uvast</i> FT their 14 [Award SC2 for 4.5 WW and SC1 for 2.5 WW]	2
		4		

Q 3		Mark	Comment	Sub
(i)	$\mathbf{F} + \begin{pmatrix} -4\\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2\\ 3 \end{pmatrix}$	M1	N2L. $F = ma$. All forces present	
		B1 B1	Addition to get resultant. May be implied. For $\mathbf{F} \pm \begin{pmatrix} -4 \\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.	
	$\mathbf{F} = \begin{pmatrix} 16\\10 \end{pmatrix}$	A1	SC4 for $\mathbf{F} = \begin{pmatrix} 16\\ 10 \end{pmatrix}$ WW. If magnitude is given, final mark is lost unless vector answer is clearly intended.	
				4
(ii)	$\arctan\left(\frac{16}{10}\right)$	M1	Accept equivalent and FT their F only. Do not accept wrong angle. Accept 360 - $\arctan\left(\frac{16}{10}\right)$	
	57.994 so 58.0° (3 s. f.)	A1	cao. Accept 302° (3 s.f.)	2
		6		

Q4		Mark	Comment	Sub
	either			
	We need $3.675 = 9.8t - 4.9t^2$	*M1	Equating given expression or their attempt at y to ± 3.675 . If they attempt y, allow sign errors,	
	Solving $4t^2 - 8t + 3 = 0$	M1*	g = 9.81 etc. and $u = 35$. Dependent. Any method of solution of a 3 term quadratic.	
	gives $t = 0.5$ or $t = 1.5$	A1 F1	cao. Accept only the larger root given Both roots shown and larger chosen provided both +ve. Dependent on 1 st M1. [Award M1 M1 A1 for 1.5 seen WW]	
	or	M1	Complete method for total time from motion in separate parts. Allow sign errors, $g = 9.81$ etc. Allow $u = 35$ initially only.	
	Time to greatest height		i i i i i i i i i i i i i i i i i i i	
	$0 = 35 \times 0.28 - 9.8t$ so $t = 1$	A1	Time for 1 st part	
	Time to drop is 0.5 total is 1.5 s	A1 A1	Time for 2 nd part cao	
	then			
	Horiz distance is $35 \times 0.96t$	B1	Use of $x = u \cos \alpha t$. May be implied.	
	So distance is $35 \times 0.96 \times 1.5 = 50.4$ m	F1	FT their quoted <i>t</i> provided it is positive.	
				6
		6		

Q5		Mark	Comment	Sub
(i)	For the parcel	M1	Applying N2L to the parcel. Correct mass. Allow $F = mga$. Condone missing force but do not allow spurious forces.	
	↑ N2L 55 – 5 $g = 5a$ a = 1.2 so 1.2 m s ⁻²	A1 A1	Allow only sign error(s). Allow –1.2 only if sign convention is clear.	3
(ii)	$R - 80g = 80 \times 1.2$ or $R - 75g - 55 = 75 \times 1.2$ R = 880 so 880 N	M1 A1	N2L. Must have correct mass. Allow only sign errors. FT their <i>a</i> cao [NB beware spurious methods giving 880 N]	2
		5		

Q6		Mark	Comment	Sub
	Method 1			
	$\uparrow v_{\rm A} = 29.4 - 9.8T \qquad \downarrow v_{\rm B} = 9.8T$	M1	Either attempted. Allow sign errors and $g = 9.81$ etc	
		A1	Both correct	
	For same speed $29.4 - 9.8T = 9.8T$	M1	Attempt to equate. Accept sign errors and $T = 1.5$ substituted in both.	
	so $T = 1.5$	E1	If 2 subs there must be a statement about equality	
	and $V = 14.7$	F1	FT T or V , whichever is found second	
	$H = 29.4 \times 1.5 - 0.5 \times 9.8 \times 1.5^{2}$	M1	Sum of the distance travelled by each attempted	
	$+0.5 \times 9.8 \times 1.5^{2}$		v 1	
	= 44.1	A1	cao	
	Method 2			
	$V^{2} = 29.4^{2} - 2 \times 9.8 \times x = 2 \times 9.8 \times (H - x)$	M1	Attempts at V^2 for each particle equated. Allow sign errors, 9.81 etc Allow h_1 , h_2 without $h_1 = H - h_2$	
		B1	Both correct. Require $h_1 = H - h_2$ but not an equation.	
	$29.4^2 = 19.6H$ so $H = 44.1$	A1	cao	
	Relative velocity is 29.4 so $T = \frac{44.1}{29.4}$	M1 E1	Any method that leads to T or V	
	Using $v = u + at$ $V = 0 + 9.8 \times 1.5 = 14.7$	M1 F1	Any method leading to the other variable	
			Other approaches possible. If 'clever' ways seen, reward according to weighting above.	7
		7		/
		/		1

Q7		Mark	Comment	Sub
(i)	Diagram	B1 B1	Weight, friction and 121 N present with arrows. All forces present with suitable labels. Accept <i>W</i> , <i>mg</i> , 100 <i>g</i> and 980. No extra forces.	
	Resolve $\rightarrow 121\cos 34 - F = 0$ F = 100.313 so 100 N (3 s. f.)	M1 E1	Resolving horiz. Accept $s \leftrightarrow c$. Some evidence required for the <i>show</i> , e.g. at least 4 figures. Accept \pm .	
	Resolve \uparrow R+121sin 34-980 = 0 R = 912.337 so 912 N (3 s. f.)	M1 B1 A1	Resolve vert. Accept $s \leftrightarrow c$ and sign errors. All correct	7
(ii)	It will continue to move at a constant speed of 0.5 m s^{-1} .	E1 E1	Accept no reference to direction Accept no reference to direction [Do not isw: conflicting statements get zero]	2
(iii)	Using N2L horizontally $155\cos 34 - 95 = 100a$	M1	Use of N2L. Allow $F = mga$, F omitted and 155 not resolved.	
	a = 0.335008 so 0.335 m s ⁻² (3 s. f.)	A1 A1	Use of $F = ma$ with resistance and T resolved. Allow $s \leftrightarrow c$ and signs as the only errors.	3
(iv)	$a = 5 \div 2 = 2.5$	M1 A1	Attempt to find <i>a</i> from information	
	N2L down the slope $100g \sin 26 - F = 100 \times 2.5$	M1	F = ma using their "new" <i>a</i> . All forces present. No extras. Require attempt at wt cpt. Allow $s \leftrightarrow c$ and sign errors.	
		B1	Weight term resolved correctly, seen in an equn or on a diagram.	
	<i>F</i> = 179.603 so 180 N (3 s. f.)	A1	cao. Accept -180 N if consistent with direction of F on their diagram	
				5
		17		

Q8		Mark	Comment	Sub
(i)	$v_x = 8 - 4t$	M1 A1 F1	either Differentiating or Finding 'u' and 'a' from x and use of $v = u + at$	
	$v_x = 0 \Leftrightarrow t = 2$ so at $t = 2$	FI	FT their $v_x = 0$	3
(ii)	$y = \int (3t^2 - 8t + 4) dt$ = $t^3 - 4t^2 + 4t + c$ y = 3 when $t = 1$ so $3 = 1 - 4 + 4 + c$ so $c = 3 - 1 = 2$ and $y = t^3 - 4t^2 + 4t + 2$	M1 A1 M1 E1	Integrating v_y with at least one correct integrated term. All correct. Accept no arbitrary constant. Clear evidence Clearly shown and stated	4
(iii)	We need $x = 0$ so $8t - 2t^2 = 0$ so $t = 0$ or $t = 4$ t = 0 gives $y = 2$ so 2 m $t = 4$ gives $y = 4^3 - 4^3 + 16 + 2 = 18$ so 18 m	M1 A1 A1 A1	May be implied. Must have both Condone 2 j Condone 18 j	4
(iv)	We need $v_x = v_y = 0$	M1	either Recognises $v_x = 0$ when $t = 2$ or Finds time(s) when $v_y = 0$	
	From above, $v_x = 0$ only when $t = 2$ so evaluate $v_y(2)$ $v_y(2) = 0$ [$(t - 2)$ is a factor] so yes only	M1	or States or implies $v_x = v_y = 0$ Considers $v_x = 0$ and $v_y = 0$ with their time(s)	
	at $t = 2$	A1	<i>t</i> = 2 recognised as only value (accept as evidence only <i>t</i> = 2 used below). For the last 2 marks, no credit lost for reference to $t = \frac{2}{3}$.	
	At $t = 2$, the position is (8, 2) Distance is $\sqrt{8^2 + 2^2} = \sqrt{68}$ m (8.25 3 s.f.)	B1 B1	May be implied FT from their position. Accept one position followed through correctly.	
				5
(v)	t = 0, 1 give (0, 2) and (6, 3)	B1	At least one value $0 \le t < 2$ correctly calc. This need not be plotted	
		B1	Must be <i>x</i> - <i>y</i> curve. Accept sketch. Ignore curve outside interval for <i>t</i> . Accept unlabelled axes. Condone use of line segments.	
		B1	At least three correct points used in <i>x</i> - <i>y</i> graph or sketch. General shape correct. Do not condone use of line segments.	
		10		3
		19		1