4728 Mechanics 1

	1		
1 (i)		M1	Uses CoLM
	0.5x6 = 0.5x0.8 + 4m	A1	
	m = 0.65	A1	If g used throughout, possible 3 marks
		[3]	
		M1	After momentums opposite signs
(ii)	0.5x6 = -0.5x0.8 + 4m	A1	
()	m = 0.85	A1	If g used throughout 0 marks
		[3]	
2 (i)	T - 400 N	B1	Order immaterial
2 (1)	$D = 400 \pm 000$	M1	Or T + 900: sign correct
	-1300 N		of 1 + 900, sign contect
	- 1500 N	[2]	
(::)		[3]	(Amond M months area if a included in ma terms
(11)			(Award M marks even if g included in ma terms.
			M marks require correct number forces)
	T 00 0 C T 100	MI	Uses N2L one object only
	$500 \times 0.6 = T - 400$	Al	
	T = 700 N	A1	
		M1	Uses N2L other object
	$1250 \times 0.6 = D - 900 - 700$	A1ft	ft cv(T from (ii)); allow T instead of its value
	D = 2350 N	A1	
	OR		
		M1	Uses N2L for both objects
	(500 + 1250)x0.6 = D - 400 - 900	A1	
	D = 2350 N	A1	
		[6]	
3 (i)	5cos30 or 5 sin 60 or 4.33	B1	Order immaterial, accept +/ May be awarded in
- ()	5cos 60 or 5sin30 or 2.5	B1	(ii) if no attempt in (i)
		[2]	
(ii)		M1*	Subtracts either component from either force
	7-4.33 (= 2.67) and 9 - 2.5 (= 6.5)	A1	
	$\mathbf{R}^2 = 2.67^2 + 6.5^2$	D*M	
	R = 7.03	1	3sf or better
	$\tan\theta = 6.5/2.67$	A1	Valid trig for correct angle
	$\theta = 67.6, 67.7 \text{degrees}$	D*M	3sf or better
		1	
		A1	
		[6]	
4 (i)	20008-30	M1	Resolves 20 (accept 20 sin 30)
• (1)	$20\cos 30 - 3a$	M1	Uses N2L horizontally, accept σ in ma term
	2000350 = 5d $a = 5.77 \text{ ms}^{-2}$		Oses 1122 horizontariy, accept g in ma term
		[3]	
(;;)		[3] 	Pasalyas vartically (accort _ cos if sin in i);
(II)	$\mathbf{P} = 2x0.8 \pm 20 \sin 20.(-20.4)$		Resolves vertically (accept -, cos il sili ili i);
	R = 339.0 + 208111 30 (= 39.4) E = 20 area 20 (= 17.2)		Correct no. terms
	$\Gamma = 20\cos 30 (= 1/.3)$	Ы М1	Correct (Neither K nor F need be evaluated)
	$1/.5 = 39.4 \mu$	MI	Uses $F = \mu K$
	$\mu = 0.44$	Al	
1		[5]	

5 (i)	$V = \int 0.8t dt$	M1*	Attempt at integration
	$v = 0.8t^2/2 (+c)$	A1	Award if c omitted
	t = 0, v = 13, (c = 13)	M1	
	$v = 0.4x 6^2 (+c)$	D*M1	
	$v = 27.4 \text{ ms}^{-1}$	A1	
		[5]	
(ii)	$s = \int 0.4t^2 (+c)dt$	M1*	Attempt at integration of v(t)
	$s = 0.4t^3/3 + 13t (+k)$	A1ft	ft $cv(v(t) in (i))$
	t=0, s=0, (k=0)	M1	
	$s = 0.4x6^{3}/3 + 13x6$	D*M1	
	s = 106.8 m	A1	Allow if k=0 assumed. Accept 107 m.
		[5]	
(iii)	Fig. 2	B1	
		[1]	
	Fig.1 has zero initial velocity/gradient	B1	
	Fig. 3 does not have a increasing	B1	
	velocity/gradient	[2]	
6 (i)	$2.5 = 9.8t^2/2$	M1	Uses $s = 0 + -gt^2/2$
а	t = 0.714 s or better or 5/7	A1	Not awarded if - sign "lost"
b		[2]	
	$v^2 = 2x9.8x2.5 \ OR \ v = 9.8 \ x \ 0.714$	M1	Uses $v^2 = 0 + -2gs$ or $v = u + -gt$
	$v = 7 \text{ ms}^{-1}$ or 6.99 or art 7.00	A1	Not awarded if - sign "lost"
		[2]	
(ii)	R = 2x9.8sin60 (= 16.97 = 17)	B1	With incorrect angle, e.g
		M1	$R = 2x9.8\cos 60 (=9.8) B0$
	F = 0.2x16.97 (=3.395 or 3.4)	A1ft	$F = 0.2x9.8 \ (=1.96) \ M1A1$
	Cmpt weight = $2x9.8\cos 60$ (= 9.8)	B1	Cmpt wt = $2x9.8sin60$ (=16.97) B0
	2a = 9.8 - 3.395	M1	2a = 16.97 - 1.96 M1
	$a = 3.2 \text{ ms}^{-2}$	A1ft	$a = 7.5 \text{ A1} \sqrt{\text{ft cv}(\text{R and Cmpt weight})}$
	Distance down ramp = 5 m	B1	
	$v^2 = 2x3.2x5$	M1	$v^2 = 2x7.5x5$
	v = 5.66 or 5.7	A1ft	$v = 8.66 \text{ or } 8.7 \text{ A1} \sqrt{\text{ft cv}(\sqrt{(10a)})}$
		[9]	
7 (i)		M1	Use of $v = u - 0.4t$
	p = 4 - 2x0.4 (= 3.2)	A1	
	q = 1 - 2x0.4 (= 0.2)	A1	Accept $q = -0.2$ from $-1+2*0.4$
		M1	Uses CoLM on reduced velocities
	0.7x3.2 - 0.3x0.2 = (1x)v	A1	
	$v = 2.18 \text{ ms}^{-1}$	A1	
		[6]	

	B1	Straight line with larger y intercept slopes
		towards t axis, but does not reach it.
	B1	Straight line with negative y intercept slopes
		towards t axis,
	B1	and gets to t axis before other line ends.
	[3]	SR if t=2 in ii give B1 if line stops before axis
0 = 1 - 0.4t	M1	Finds when Q comes to rest (any method)
t = 2.5 s	A1	
	M1	Uses $s = ut - 0.4t^2/2$
$P = 4x3 - 0.5x0.4x3^2$	A1	
$Q = 1x2.5 - 0.5x0.4x2.5^2$	A1	(nb $0^{(2)} = 1^{(2)} - 0.4Q^2/2$ B1; convincing
PQ = 10.2 + 1.25 = 11.45 m	A1	evidence (graph to scale, or calculation that Q
	[6]	comes to rest and remains at rest at t less than
		3, M1A1; graph A1 needs -ve v intercept)
		SR if t=2 in iib, allow M1 for s= ut - $0.4t^2/2$
		And A1 for PQ=8.4
	0 = 1 - 0.4t t = 2.5 s $P = 4x3 - 0.5x0.4x3^{2}$ Q = 1x2.5 - 0.5x0.4x2.5 ² PQ = 10.2 + 1.25 = 11.45 m	B1 B1 B1 B1 B1 B1 [3] M1 A1 P = $4x3 - 0.5x0.4x3^2$ Q = $1x2.5 - 0.5x0.4x2.5^2$ PQ = $10.2 + 1.25 = 11.45$ m [6]

Alternative for Q3 where 7 N and 9N forces combined initially

3 (i)	5cos30 or 5 sin 60 or 4.33	B1	Order immaterial, accept +/ May be awarded
	5cos 60 or 5sin30 or 2.5	B1	in (ii) if no attempt in (i)
		[2]	_
(ii)	$Z^2 = 7^2 + 9^2 (= 130, Z = 11.4017)$		Z is resultant of 7N and 9N forces only
	$\cos(\text{angle of } Z \text{ with } y \text{ axis}) = 9/11.4017$		
	Angle on Σ with y dxis = 57.8740		P is resultant of all 2 forces
	Angle opposite K in thangle of forces =	3.51.4	K is resultant of an 5 forces
	180 - (37.8746+90+30)	M1*	Complete method
	= 22.125 (Accept 22)	A1	
	$\mathbf{R}^2 = 5^2 + 11.4017^2 - 2x5x11.4017\cos 22.125$	D*M1	Cosine rule to find R
	R (= 7.0269) = 7.03 N	A1	
	$11.4017^2 = 5^2 + 7.0269^2 - 2x5x7.0269\cos A$		Or Sine Rule. A is angle between R and 5N
	(A = 142.33)		forces
	Angle between R and y axis = $142.33-30$ -	D*M1	
	90 (=22.33)		Complete method
	θ (= 90-22.33) =67.7 degrees	A1	θ is angle between R and x axis
		[6]	