

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6683/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

January 2009 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marl	<s< th=""></s<>		
1	$S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$	M1 A1			
(a)	$\mathbf{S}_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$				
(b)	$b = \frac{S_{xy}}{S_{xx}} = 9.4765$				
	$a = \overline{y} - b\overline{x} = 9.6 - 2.14b = (-10.679)$	A1	(4)		
(c)	y = -10.7 + 9.48x Every (extra) <u>hour</u> spent using the programme produces about <u>9.5 marks improvement</u>	B1ft	(1)		
(d)	$y = -10.7 + 9.48 \times 3.3 = 20.6$ awrt 21	M1,A1	(2)		
(e)	Model may not be valid since [8h is] outside the range [0.5 - 4].	B1	(1) [11]		
(a)	M1 for a correct expression $1^{st} A1$ for AWRT 11.4 for S_{xx}				
	2^{nd} A1 for AWRT 108 for S _{rv}				
(b)	Correct answers only: One value correct scores M1 and appropriate A1, both correct M1A1A1				
	1 st M1 for using their values in correct formula 1 st A1 for AWRT 9.5 2 nd M1 for correct method for <i>a</i> (minus sign required) 2 nd A1 for equation with <i>a</i> and <i>b</i> AWRT 3 sf (e.g. $y = -10.68 + 9.48x$ is fine)				
(c)	Must have a full equation with <i>a</i> and <i>b</i> correct to awrt 3 sf				
	B1ft for comment conveying the idea of <u>b marks per hour</u> . Must mention value of b but can ft their value of b. No need to mention "extra" but must mention "marks" and "hour(s) e.g. "9.5 times per hour" scores B0				
(d)	M1 for sub $x = 3.3$ into their regression equation from the end of part (b) A1 for awrt 21				
(e)	B1 for a statement that says or implies that it may <u>not</u> be valid because <u>outside the range</u> They do not have to mention the values concerned here namely 8 h or 0.5 - 4	ange.			

Question Number	Scheme		Marks	
2 (a)	$E = \text{take regular exercise} \qquad B = \text{always eat breakfast}$ $P(E \cap B) = P(E \mid B) \times P(B)$ $= \frac{9}{25} \times \frac{2}{3} = 0.24 \text{ or } \frac{6}{25} \text{ or } \frac{18}{75}$	M1 A1	(2)	
(b)	$P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25} \text{or} P(E' \mid B') \text{or} P(B' \cap E) \text{or} P(B \cap E')$ $= \frac{62}{75} \qquad = \frac{13}{25} \qquad = \frac{12}{75} \qquad = \frac{32}{75}$	M1 A1		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	(4)	
(c)	$P(E B) = 0.36 \neq 0.40 = P(E)$ or $P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$	M1 A1	(2)	
	So <i>E</i> and <i>B</i> are <u>not</u> statistically independent		[8]	
(a)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or P(<i>E</i> <i>B</i>)×P(<i>B</i>) and at least one correct value seen. A1 for 0.24 or example NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks.	ct equiv.		
(b)	1 st M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a) Or a full method for P(E' B') requires 1 - P(E B') and equation for P(E B'); (a) + $\frac{x}{2} = \frac{2}{\pi}$			
(c)	$\frac{D}{Dt} = 1 \text{ bial defined for } P(B' \cap E) \text{ or } P(B \cap E') \text{ [or other valid method]}$ 2 nd M1 for a method leading to answer e.g. 1−P(E ∪ B) or P(B')×P(E' B') or P(B')−P(B' ∩ E) or P(E')−P(B ∩ E') <u>Venn Diagram</u> 1 st M1 for diagram with attempt at $\frac{2}{5}$ −P(B ∩ E) or $\frac{2}{3}$ −P(B ∩ E). Can ft their (a) 1 st A1 for a correct first probability as listed or 32, 18 and 12 on Venn Diagram 2 nd M1 for attempting 75 - their (18 + 32 + 12) M1 for identifying suitable values to test for independence e.g. P(E) = 0.40 and P(E B) = 0.36 <u>Or</u> P(E)×P(B) = and P(E ∩ B) = their (a) [but their (a) $\neq \frac{2}{5} \times \frac{2}{3}$]. Values seen somewhere A1 for correct values and a correct comment			
	Diagrams You may see these or find these useful for identifying probabilities.			
	bres M1A scores M $=\frac{1}{3} \times \frac{3}{5}$.0 1A0		

Ques Num	tion ber			Scheme			Mark	(S
3	(a)	$E(X) = 0 \times 0.4 + 1 \times 0.3 + \dots + 3 \times 0.1, = 1$			M1, A1	(2)		
	(b)	$F(1.5) = [P(X \le 1.5) =] P(X \le 1), = 0.4 + 0.3 = 0.7$			M1, A1	(2)		
	(C)	$E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.3 + + 3^2 \times 0.1$, = 2			M1, A1			
		$Var(X) = 2 - 1^2$, = 1 (*)			M1, A1c	cso (4)		
	(d)	$Var(5-3X) = (-3)^2 Var(X), = 9$			M1, A1	(2)		
	(p)	-						
	(e)	-	Total	Cases	Probability	-		
				$(X=3) \cap (X=1)$	$0.1 \times 0.3 = 0.03$	4		
			4	$(X=1) \cap (X=3)$	$0.3 \times 0.1 = 0.03$	4		
		-		$(X=2) \cap (X=2)$	$0.2 \times 0.2 = 0.04$	-	B1B1B1	
			5	$(X=3) \cap (X=2)$	$0.1 \times 0.2 = 0.02$	4		
		-	_	$(X=2) \cap (X=3)$	$0.2 \times 0.1 = 0.02$	-	M1	
			6	$(X=3) \cap (X=3)$	$0.1 \times 0.1 = 0.01$		AI	
		Total probab	poility = 0.03 + 0.03	03+0.04 +0.02 + 0.02 + 0	0.01 = 0.15		A1	(6) [16]
	(a)	M1 for a	t least 3 terms see	en. Correct answer only	scores M1A1. Dividing	$k \neq 1$	is M0.	
	(b) M1 for $F(1.5) = P(X < 1)$. [Beware: $2 \times 0.2 + 3 \times 0.1 = 0.7$ but scores M0A0]							
	(c)							
	(C)	1 st M1 for at least 2 non-zero terms seen. $E(X^2) = 2$ alone is M0. Condone calling $E(X)$				2) =Var(X	<i>.</i>).	
		1^{st} A1 is for an answer of 2 or a fully correct expression.						
ALT		2^{nd} M1 for $-\mu^2$, condone 2 – 1, unless clearly 2 Allow $2-\mu^2$, with = 1 even if E					$E(X) \neq 1$	
		$\sum_{n=1}^{\infty} (n)^2$	$\frac{1}{2}$ D(V)	ution with no incorrect w	orking seen, both wis r	equired.		
	$\frac{\sum (x-\mu)^2 \times P(X=x)}{1^{\text{st}} \text{ M1 for an attempt at a full list of } (x-\mu)^2 \text{ values and probabilities. } 1^{\text{st}} \text{ A1 if all correct}$							
						ect		
		2^{nd} M1 for at least 2 non-zero terms of $(x - \mu)^2 \times P(X = x)$ seen. 2^{nd} A1 for $0.4 + 0.2 + 0.4 = 1$						
	(d)							
	(4)	M1 for u	ise of the correct	formula. $-3^2 \operatorname{Var}(X)$ is	M0 unless the final answ	wer is >0 .		
	(e)	Can	follow through t	heir $Var(X)$ for M1				
		1 st B1 for	all cases listed for	or a total of 4 or 5 or 6.	e.g. (2,2) counted twice	for a total	of 4 is B0	
ALT		2 nd B1 for all cases listed for 2 totals }						
		3 rd B1 for	a complete list of lative probabiliti	t all 6 cases	These may be high	lighted in a	table	
		1^{st}B1 for	one or more cum	ulative probabilities use	d e.g.2 then 2 or more o	r 3 then 1 o	r more	
		2 nd B1 for both cumulative probabilities used. 3 rd B1 for a complete list 1, 3; 2, \geq 2; 3, \geq 1						
		1 st A1 for all 6 correct probabilities listed $(0.03, 0.03, 0.04, 0.02, 0.02, 0.01)$ needn't be added						
		2^{nd} A1 for	0.15 or exact equ	uivalent only as the final	answer.		autou.	

Question Number	Scheme	Marks		
4 (a)	$Q_2 = 53, Q_1 = 35, Q_3 = 60$	B1, B1,B1		
(b)	$Q_3 - Q_1 = 25 \Longrightarrow Q_1 - 1.5 \times 25 = -2.5$ (no outlier)	(3) M1		
(-)	$Q_3 + 1.5 \times 25 = 97.5$ (so 110 is an outlier)	A1 (2)		
(C)		M1		
		A1ft		
	0 10 20 30 40 50 60 70 80 90 100 110 120	A1ft (3)		
(d)	4612	B1, B1,		
	$\sum y = 461, \sum y^2 = 24\ 219$ $\therefore S_{yy} = 24219 - \frac{401}{10}, = 2966.9$ (*)	B1cso		
(e)		(3)		
(f)	$r = \frac{-18.3}{\sqrt{3463.6 \times 2966.9}}$ or $\frac{-18.3}{3205.64} = -0.0057$ AWRT - 0.006 or -6×10^{-3}	M1 A1 (2)		
	r suggests correlation is close to zero so parent's claim is not justified	B1 (1)		
(a)	1 st B1 for median	[14]		
	2 nd B1 for lower quartile 3 rd B1 for upper quartile			
(b)	M1 for attempt to find one limitA1 for both limits found and correct. No explicit comment about outliers needed.			
(c)	 M1 for a box and two whiskers 1st A1ft for correct position of box, median and quartiles. Follow through their values. 2nd A1ft for 17 and 77 or "their" 97.5 and *. If 110 is not an outlier then score A0 here. Penalise no gap between end of whisker and outlier. Must label outlier, needn't be with *. <u>Accuracy</u> should be within the correct square so 97 or 98 will do for 97.5 			
(d)	1 st B1 for $\sum y$ N.B. $(\sum y)^2 = 212521$ and can imply this mark			
	2^{nd} B1 for $\sum y^2$ or at least three correct terms of $\sum (y - \overline{y})^2$ seen.			
	3^{rd} B1 for complete correct expression seen leading to 2966.9. So all 10 terms of $\sum ($	$(y-\overline{y})^2$		
(e)	M1 for attempt at correct expression for r. Can ft their S_{yy} for M1.			
(f)	B1 for comment <u>rejecting</u> parent's claim on basis of <u>weak or zero</u> correlation Typical error is "negative correlation so comment is true" which scores B0 Weak negative or weak positive correlation is OK as the basis for their rejection	ı.		

Question Number	uestion Jumber		Marks	
5 (a)	8-10 hours: width = $10.5 - 7.5 = 3$ represented by 1.5cm 16-25 hours: width = $25.5 - 15.5 = 10$ so represented by 5 cm 8- 10 hours: height = fd = $18/3 = 6$ represented by 3 cm 16-25 hours: height = fd = $15/10 = 1.5$ represented by <u>0.75 cm</u>	B1 M1 A1	(3)	
(b)	$Q_2 = 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$	M1 A1		
	$Q_1 = 5.5 + \frac{(26-20)}{16} \times 2[=6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25-20)}{16} \times 2[=6.3]$	A1		
	$Q_3 = 10.5 + \frac{(78-54)}{25} \times 5[=15.3]$ or $10.5 + \frac{(78.75-54)}{25} \times 5[=15.45 \ 15.5]$	A1 A1ft	(5)	
(c)	$IQR = (15.3 - 6.3) = 9$ $\sum_{x=1}^{3} f_{x} = 1333.5$	M1 A1		
	$\sum jx = 1555.5 \Rightarrow x = \frac{104}{104} = $ AWR1 <u>12.8</u>			
(d)	$\sum fx^2 = 27254 \Longrightarrow \sigma_x = \sqrt{\frac{27234}{104}} - \bar{x}^2 = \sqrt{262.05} - \bar{x}^2 \qquad \text{AWRT } \underline{9.88}$	M1 A1	(4)	
(e)	$Q_3 - Q_2 [= 5.1] > Q_2 - Q_1 [= 3.9]$ or $Q_2 < \overline{x}$ So data is positively skew	B1ft dB1	(2)	
	Use median and IQR, since data is skewed or not affected by extreme values or outliers	B1 B1	(2) [16]	
(a)	M1 For attempting both frequency densities $\frac{18}{3}(=6)$ and $\frac{15}{10}$, and $\frac{15}{10} \times SF$, where $SF \neq$	1		
(b)	NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores M1A0			
	M1 for identifying correct interval and a correct fraction e.g. $\frac{\frac{1}{2}(104)-36}{18}$. Condone 52.5 or 53			
	1^{st} A1 for 10.2 for median. Using $(n + 1)$ allow awrt 10.3	ND.		
	2^{nd} A1 for a correct expression for either Q_1 or Q_3 (allow 26.25 and 78.75) Mu	<u>IND</u> . st see		
	$3^{\rm rd}$ A1 for correct expressions for both Q_1 and Q_3	some		
(c)	4^{th} A1ft for IQR, ft their quartiles. Using $(n + 1)$ gives 6.28 and 15.45 <u>m</u>	ethod		
	1 st M1 for attempting $\sum fx$ and \overline{x}			
(d)	2 nd M1 for attempting $\sum fx^2$ and σ_x , $$ is needed for M1. Allow <i>s</i> = awrt 9.93			
	1 st B1ft for suitable test, values need not be seen but statement must be compatible with			
	2 nd dB1 Dependent upon their test showing positive and for stating positive skew			
(e)	If their test shows negative skew they can score 1 st B1 but lose the second			
	1^{st} B1 for choosing median and IQR. Must mention <u>both</u> . } <u>Award independence</u>	lently		
	e.g. "use median because data is skewed" scores B0B1 since IQR is not mentioned			

Question Number	Scheme		
6 (a)	$P(X < 39) = P\left(Z < \frac{39 - 30}{5}\right)$ = P(Z < 1.8) = 0.9641 (allow awrt 0.964)	M1 A1	(2)
(b)	$P(X < d) = P\left(Z < \frac{d - 30}{5}\right) = 0.1151$	N/1	
	$1-0.1151 = 0.8849$ $\Rightarrow z = -1.2$ $\frac{d-30}{2} = -1.2$ $d = 24$ (allow ± 1.2)	B1 M1A1	(4)
(c)	$\frac{u-24}{5}$		
	$P(X > e) = 0.1151$ so $e = \mu + (\mu - \text{their } d)$ or $\frac{e - 30}{5} = 1.2 \text{ or } - \text{their } z$	M1	
(d)	$P(d < X < e) = 1 - 2 \times 0.1151$	A1 M1	(2)
	= 0.7698 AWRT <u>0.770</u>	A1	(2) [10]
	Answer only scores all marks in each section BUT check (b) and (c) are in correct of	rder	
(a)	M1 for standardising with σ , $z = \pm \frac{39 - 30}{5}$ is OK		
	A1 for 0.9641 or awrt 0.964 but if they go on to calculate $1 - 0.9641$ they get M1A0)	
(b)	1 st M1 for attempting 1- 0.1151. Must be seen in (b) in connection with finding <i>d</i> B1 for $z = \pm 1.2$. They must state $z = \pm 1.2$ or imply it is a <i>z</i> value by its use. This mark is only available in part (b). 2 nd M1 for $\left(\frac{d-30}{5}\right)$ = their negative <i>z</i> value (or equivalent)		
(c)	M1 for a full method to find <i>e</i> . If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$ here If they use symmetry about the mean $\mu + (\mu - \text{their } d)$ then ft their <i>d</i> for M1 Must explicitly see the method used unless the answer is correct.		
(d)	M1 for a complete method or use of a correct expression e.g. "their 0.8849" - 0.1151 or If their $d <$ their e using their values with $P(X < e) - P(X < d)$ If their $d \ge$ their e then they can only score from an argument like $1 - 2x0.1151$ A negative probability or probability > 1 for part (d) scores M0A0		