4732 Probability \& Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to ≥ 3 sfs, ISW for later rounding. Penalise over-rounding only once in paper.

1 (i)	$\begin{aligned} & 0.2^{2}+0.7 \times 0.1 \times 2 \\ & =0.18 \mathrm{AG} \end{aligned}$		0.2^{2} or $0.7 \times 0.1: \quad$ M1 no errors seen \quad NB $2 \times 0.9 \times 0.1=0.18 \ldots$ M0A0
(ii)	$\begin{aligned} & 0.28+2 \times 0.18+3 \times 0.04+4 \times 0.01 \\ & =0.8 \text { oe } \\ & 0.28+2^{2} \times 0.18+3^{2} \times 0.04+4^{2} \times 0.01 \\ & -" 0.8{ }^{\prime 2} \\ & =0.88 \text { oe } \end{aligned}$	$\begin{array}{ll}\text { M1 } \\ & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 5\end{array}$	```\(\geq 2\) terms correct (excl \(0 \times 0.49\)) \(\div 5\) (or 4 or 10 etc): M0 \(\geq 2\) terms correct (excl \(0^{2} \times 0.49\)) dep +ve result cao \(\Sigma(x-\mu)^{2}: 2\) terms: M1; 5 terms M2 \(0.8^{2} \times 0.49+0.2^{2} \times 0.28+1.2^{2} \times 0.18+2.2^{2} \times 0.04+3.2^{2} \times 0.01\) SC Use original table, 0.4:B1 0.44: B1```
Total		8	
2(i)(a)	$\begin{aligned} & \frac{8736.9-\frac{202 \times 245.3}{7}}{7300-\frac{202^{2}}{7}} \text { or } \frac{1658.24}{1470.86} \\ & =1.127 \ldots \quad \quad(=1.13 \mathrm{AG}) \end{aligned}$	M1 A1 2	correct sub in any correct formula for b eg $\frac{236.8921}{210.1249}$ must see $1.127 \ldots$; 1.127.. alone: M1A1
(b)	$\begin{aligned} & y-245.3 / 7=1.13(x-202 / 7) \\ & y=1.1 x+2.5(\text { or } 2.4) \text { or } y=1.13 x+2.43 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	$\begin{aligned} & \text { or } a=245 / \frac{3}{7}-1.13 \times 202 /_{7} \\ & 2 \text { sfs suff. } \\ & \text { (exact:y }=1.127399 . x+2.50934 \ldots \text {). } \end{aligned}$
(ii)(a)	$(1.1(.) \times 30+.2.5(.))=$.35.5 to 36.5	B1f 1	
(b)	$(1.1(.) \times 100+.2.5(.))=$.112.4 to 115.6	B1f 1	
(iii)	(a) Reliable (b) Unreliable because extrapolated		Both reliable: B1 (a) more reliable than (b) B1 because (a) within data or (b) outside data B1 Ignore extras
Total		8	
3(i)(a)	$\begin{aligned} & \text { Geo stated } \\ & (7 / 8)^{2}(1 / 8) \\ & 49 / 512 \text { or } 0.0957(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	or impl. by $(1 / 8)^{n}(1 / 8)$ or $(1 / 8)^{n}\left({ }^{7} / 8\right)$ alone
(b)	$(7 / 8)^{3}$ alone $343 / 512$ or $0.670(3 \mathrm{sfs}) \quad$ allow 0.67	M2 $\text { A1 } 3$	or $\begin{array}{cc}1-\left(1 / 8+/ 8 \times 8+(/ 8)^{2} \times 1 / 8\right): & \text { M2 } \\ \text { one term incorrect, omit or extra: } & \text { M1 } \\ 1-(7 / 8)^{3} \text { or }(7 / 8)^{2} \text { alone: } & \text { M1 }\end{array}$
(ii)	8 -		
(iii)	Binomial stated or implied $\begin{aligned} & { }^{15} \mathrm{C}_{2}(7 / 8)^{13}(1 / 8)^{2} \\ & =0.289(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \\ \hline \end{array}$	eg by $(1 / 8){ }^{\text {a }}(1 / 8)^{\text {b }}(a+b=15, a, b \neq 1)$, not just ${ }^{n} \mathrm{C}_{r}$
Total		10	
4 (i)	$\left.\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & \text { or } & 5 & 4 & 3 & 2\end{array}\right]$	M1 A1 M1dep M1dep A1 5	attempt ranks correct ranks $S_{x x}$ or $S_{y y}=55-15^{2} / 5(=10)$ or $S_{y y}=39-15^{2} / 5(=-6)$ $-6 / \sqrt{ }(10 \times 10)$

(ii)	$1 \& 3$ Largest neg r_{s} or large neg r_{s} or strong neg corr'n or close(st) to -1 or lowest r_{s}ft if$\quad$$-1<(\mathrm{i})<-0.9$, ans $1 \& 2$ B1dep 2	NOT: furthest from 0 or closest to ± 1 little corr'n most disagreement	
Total		7	

5 (i)	$\begin{aligned} & 68 \\ & 75-59 \\ & =16 \\ & \hline \end{aligned}$	B1 M1 A1 3	attempt $6^{\text {th }} \& 18^{\text {th }}$ or $58-60,74-76 \&$ subtr must be from 75-59
(ii)	Unaffected by outliers or extremes (allow less affected by outliers) sd can be skewed by one value	B1 1	NOT: ... by anomalies or freaks easier to calculate
(iii)	Shows each data item, retains orig data can see how many data items can find (or easier to read) mode or modal class can find (or easier to read) frequs can find mean Harder to read med (or Qs or IQR) Doesn't show med (or Qs or IQR) B\&W shows med (or Qs or IQR) B\&W easier to compare meds	B1 $\text { B1 } 2$	NOT: shows freqs shows results more clearly B\&W does not show freqs NOT: B\&W easier to compare $B \& W$ shows spread or variance or skew B\&W shows highest \& lowest Assume in order: Adv, Disadv, unless told Allow disadv of B\&W for adv of S\&L \& vice versa Ignore extras
(iv)	$\mathrm{m}=68.1$ NOT by restart $\mathrm{sd}=9.7$ (or same) NOT by restart	$\begin{array}{ll} \mathrm{B} 1 & \\ \mathrm{~B} 1 & 2 \end{array}$	Restart mean or mean \& sd: 68.1 or $68.087 \& 9.7$ or 9.73 B1 only
Total		8	

6 (i) (a)	$\begin{aligned} & 8! \\ & =40320 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	Allow ${ }^{4} \mathrm{P}_{4} \&{ }^{3} \mathrm{P}_{3}$ instead of 3! \& 4! thro’out Q6
(b)	$\begin{aligned} & 4 / 8 \times 4 / 7 \times 3 / 6 \times 3 / 5 \times 2 / 4 \times 2 / 3 \times 1 / 2 \\ & \times 2 \\ & =1 / 35 \text { or } 0.0286(3 \mathrm{sfs}) \end{aligned}$	M1 M1dep A1 3	$\begin{aligned} & \begin{array}{l} 4!\times 4!\div 8! \\ \times 2 \end{array} \begin{array}{r} \text { allow } 1-\text { above for M1 only } \\ \\ \\ \text { oe, eg }{ }^{1152} / 40320 \end{array} \end{aligned}$
(ii)(a)	$\begin{aligned} & 4!\times 4! \\ & =576 \end{aligned}$	$\begin{array}{lll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	allow 4! $\times 4!\times 2$ M1
(b)	1/16 or 00625	B1 1	
(c)	Separated by 5 or 6 qus stated or illus $\begin{aligned} & \frac{1}{4} \times 1 / 4 \times 3 \text { or } 1 / 16 \times 3 \\ & \left(1 / 4 \times \frac{1}{4} \text { or } 1 / 16 \text { alone or } \times(2 \text { or } 6):\right. \\ & \text { M1) } \\ & 3 / 16 \text { or } 0.1875 \text { or } 0.188 \end{aligned}$	M1 M2 A1 4	allow 5 only or 6 only or (4,5 or 6) can be impl by next M2 or M1 correct ans, but clearly B, J sep by 4: M0M2A0
Total		12	

7 (i)	Binomial $n=12, p=0.1$ Plates (or seconds) independent oe Prob of fault same for each plate oe	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 4 \end{array}$	B(12, 0.1) : B2 NOT: batches indep Comments must be in context Ignore incorrect or irrelevant
(ii)(a)	$\begin{aligned} & 0.9744-0.8891 \text { or }{ }^{12} \mathrm{C}_{3} \times 0.9^{9} \times 0.1^{3} \\ & =0.0852 \text { or } 0.0853(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(b)	$\begin{aligned} & 1-0.2824 \text { or } 1-0.9^{12} \\ & =0.718 \text { (3 sfs) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	allow 1-0.6590 or 1-0.9 ${ }^{\text {11 }}$
(iii)	"0.718" and $1-$ " 0.718 " used $\begin{aligned} (1-0.718)^{4} & +4(1-0.718)^{3} \times 0.718 \\ & +{ }^{4} \mathrm{C}_{2}(1-0.718)^{2} \times 0.718^{2} \end{aligned}$ $=0.317(3 \mathrm{sfs})$	B1 M2 $\text { A1 } 4$	ft (b) for B1M1M1 M1 for any one term correct (eg opp tail or no coeffs) $\begin{array}{lr}1-\mathrm{P}(3 \text { or } 4) \text { follow similar scheme } & \text { M2 or M1 } \\ 1-\text { correct wking }(=0.623) & \text { B1M2 } \\ \text { cao }\end{array}$
Total		12	

8 (i)	$\begin{aligned} & 1 / 6+3 \times(1 / 6)^{2} \\ & =1 / 4 \ldots \ldots \ldots . \end{aligned}$	M2 A1 3	$\begin{array}{r} \text { or } 3 \times(1 / 6)^{2} \text { or } 1_{6}^{1 / 6}+\left(\frac{1}{6}\right)^{2} \text { or }{ }^{1 / 6+2(1 / 6)^{2}} \\ \text { or } 1 / 6+4(1 / 6)^{2} \quad \text { M1 } \end{array}$
(ii)	$1 / 3$	B1 1	
(iii)	3 routes clearly implied out of 18 possible (equiprobable) routes	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	$\begin{aligned} & \text { or } 1 / 3 \times 1 / 6 \times 3 \\ & \text { or } 11 / 3 \times 1 / 6 \text { or } 1 / 6 \times 1 / 6 \times 3 \text { or } 1 / 3 \times 1 / 3 \times 3 \text { or } 1 / 4-1 / 6 \text { M1 } \\ & \text { but } 1 / 6 \times 1 / 6 \times 2 \end{aligned}$
			$\begin{aligned} & \frac{\left(\frac{1}{6}\right)^{2} \times 3}{\frac{1}{2}} \text { or } \frac{\frac{1}{4}-\frac{1}{6}}{\frac{1}{2}} \text { or } \frac{\frac{1}{2} \times \frac{1}{6}}{\frac{1}{2}} \text { oe } \\ & \text { or } \frac{\mathrm{P}(48 \text { twice) }}{\mathrm{P} \text { (twice })} \text { stated or } \frac{\text { prob }}{\frac{1}{2}} \end{aligned}$
			Whatever $1^{\text {sit }}$, only one possibility on $2^{\text {nd }}$ M2
			$1 / 6$, no wking M1M1A1 $1 / 12$, no wking M0
		A1 3	
Total		7	

Total 72 marks

