4751 (C1) Introduction to Advanced Mathematics

1		$[a=]2c^2-b \text{ www o.e.}$	3	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty
2		5x - 3 < 2x + 10	M1	condone '=' used for first two Ms M0 for just $5x - 3 < 2(x + 5)$
		3 <i>x</i> <13 13	M1	or $-13 < -3x$ or ft
		$x < \frac{13}{3}$ o.e.	M1	or ft; isw further simplification of 13/3; M0 for just $x < 4.3$
3	(i)	(4, 0)	1	allow $y = 0$, $x = 4$ bod B1 for $x = 4$ but do not isw: 0 for (0, 4) seen 0 for (4, 0) and (0, 10) both given (choice) unless (4, 0) clearly identified as the <i>x</i> -axis intercept
3	(ii)	5x + 2(5 - x) = 20 o.e.	M1	for subst or for multn to make coeffts same and appropriate addn/subtn; condone one error
		(10/3, 5/3) www isw	A2	or A1 for $x = 10/3$ and A1 for $y = 5/3$ o.e. isw; condone 3.33 or better and 1.67 or better
				A1 for (3.3, 1.7)
4	(i)	translation	B1	0 for shift/move
		by $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$ or 4 [units] to left	B1	or 4 units in negative <i>x</i> direction o.e.
4	(ii)	sketch of parabola right way up and with minimum on negative <i>y</i> -axis	B1	mark intent for both marks
		min at $(0, -4)$ and graph through -2 and 2 on <i>x</i> -axis	B1	must be labelled or shown nearby
5	(i)	$\frac{1}{12}$ or $\pm \frac{1}{12}$	2	M1 for $\frac{1}{144^{\frac{1}{2}}}$ o.e. or for $\sqrt{144} = 12$ soi
5	(ii)	denominator = 18	B 1	B0 if 36 after addition
		numerator = $5 - \sqrt{7} + 4(5 + \sqrt{7})$	M1	for M1 , allow in separate fractions
		$= 25 + 3\sqrt{7}$ as final answer	A1	allow B3 for $\frac{25+3\sqrt{7}}{18}$ as final answer
				www

4751	Mark	Scheme	e January 2010
6 (i)	cubic correct way up and with two turning pts touching <i>x</i> -axis at -1, and through it at 2.5 and no other intersections	B1 B1	intns must be shown labelled or worked out nearby
	<i>y</i> - axis intersection at -5	B1	
6 (ii)	$2x^3 - x^2 - 8x - 5$	2	B1 for 3 terms correct or M1 for correct expansion of product of two of the given factors
7	attempt at $f(-3)$ -27 + 18 - 15 + k = 6 k = 30	M1 A1 A1	or M1 for long division by $(x + 3)$ as far as obtaining $x^2 - x$ and A1 for obtaining remainder as $k - 24$ (but see below) equating coefficients method: M2 for $(x + 3)(x^2 - x + 8)$ [+6] o.e. (from inspection or division) eg M2 for obtaining $x^2 - x + 8$ as quotient in division
8	$x^{3} + 15x + \frac{75}{x} + \frac{125}{x^{3}}$ www isw or $x^{3} + 15x + 75x^{-1} + 125x^{-3}$ www isw	4	B1 for both of x^3 and $\frac{125}{x^3}$ or $125x^{-3}$ isw and M1 for 1 3 3 1 soi; A1 for each of $15x$ and $\frac{75}{x}$ or $75x^{-1}$ isw or SC2 for completely correct unsimplified answer

2

4751

Mark Scheme

			-
9	$x^2 - 5x + 7 = 3x - 10$	M1	or attempt to subst $(y + 10)/3$ for x
	$x^{2} - 8x + 17 = 0$ o.e or $y^{2} - 4y + 13 = 0$ o.e	M1	condone one error; allow M1 for $x^2 - 8x = -17$ [oe for <i>y</i>] only if they go on to completing square method
	use of $b^2 - 4ac$ with numbers subst (condone one error in substitution) (may be in quadratic formula)	M1	or $(x-4)^2 = 16 - 17$ or $(x-4)^2 + 1 = 0$ (condone one error)
	$b^2 - 4ac = 64 - 68 \text{ or } -4 \text{ cao}$ [or 16 - 52 or -36 if y used]	A1	or $(x-4)^2 = -1$ or $x = 4 \pm \sqrt{-1}$ [or $(y-2)^2 = -9$ or $y = 2 \pm \sqrt{-9}$]
	[< 0] so no [real] roots [so line and curve do not intersect]	A1	or conclusion from comp. square; needs to be explicit correct conclusion and correct ft; allow '<0 so no intersection' o.e.; allow '-4 so no roots' etc
			allow A2 for full argument from sum of two squares = 0; A1 for weaker correct conclusion
			some may use the condition $b^2 < 4ac$ for no real roots; allow equivalent marks, with first A1 for 64 < 68 o.e.
10 (i)	grad CD = $\frac{5-3}{3-(-1)} \left[= \frac{2}{4} \text{ o.e.} \right]$ isw	M1	NB needs to be obtained independently of grad AB
	grad AB = $\frac{3-(-1)}{6-(-2)}$ or $\frac{4}{8}$ isw	M1	
	same gradient so parallel www	A1	must be explicit conclusion mentioning 'same gradient' or 'parallel'
			if M0, allow B1 for 'parallel lines have same gradient' o.e.
10 (ii)	$[BC2=] 32 + 22[BC2 =] 13showing AD2 = 12 + 42 [=17] [\neqBC2]isw$	M1 A1 A1	accept $(6-3)^2 + (3-5)^2$ o.e. or [BC =] $\sqrt{13}$ or [AD =] $\sqrt{17}$
			or equivalent marks for finding AD or AD ² first
			alt method: showing $AC \neq BD$ – mark equivalently

10 (iii)	[BD eqn is] y = 3	M1	eg allow for 'at M, $y = 3$ ' or for 3 subst in eqn of AC
	eqn of AC is $y - 5 = \frac{6}{5} \times (x - 3)$ o.e [$y = 1.2x + 1.4$ o.e.]	M2	or M1 for grad AC = $6/5$ o.e. (accept unsimplified) and M1 for using their grad of AC with coords of A(-2, -1) or C (3, 5) in eqn of line or M1 for 'stepping' method to reach M
	M is (4/3, 3) o.e. isw	A1	allow : at M, $x = 16/12$ o.e. [eg =4/3] isw A0 for 1.3 without a fraction answer seen
10 (iv)	midpt of $BD = (5/2, 3)$ or equivalent simplified form cao	M1	or showing $BM \neq MD$ oe [$BM = 14/3$, $MD = 7/3$]
	midpt AC = $(1/2, 2)$ or equivalent simplified form cao or 'M is 2/3 of way from A to C'	M1	or showing $AM \neq MC$ or $AM^2 \neq MC^2$
	conclusion 'neither diagonal bisects the other'	A1	in these methods A1 is dependent on coords of M having been obtained in part (iii) or in this part; the coordinates of M need not be correct; it is also dependent on midpts of both AC and BD attempted, at least one correct
			alt method: show that mid point of BD does not lie on AC (M1) and vice-versa (M1), A1 for both and conclusion

Mark Scheme

11 (i)	centre C' = (3, -2)	1	
11 (1)	radius 5	1	0 for ± 5 or -5
11 (ii)	showing $(6-3)^2 + (-6+2)^2 = 25$	B1	interim step needed
	showing that $\overrightarrow{AC'} = \overrightarrow{C'B} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ o.e.	B2	or B1 each for two of: showing midpoint of $AB = (3, -2)$; showing B (0, 2) is on circle; showing $AB = 10$
			or B2 for showing midpoint of $AB = (3, -2)$ and saying this is centre of circle
			or B1 for finding eqn of AB as y = -4/3 x + 2 o.e. and B1 for finding one of its intersections with the circle is (0, 2)
			or B1 for showing C'B = 5 and B1 for showing AB = 10 or that AC' and BC' have the same gradient
			or B1 for showing that AC' and BC' have the same gradient and B1 for showing that B (0, 2) is on the circle
11 (iii)	grad AC' or AB = $-4/3$ o.e.	M1	or ft from their C', must be evaluated
	grad tgt = -1 /their AC' grad	M1	may be seen in eqn for tgt; allow M2 for grad tgt = $\frac{3}{4}$ oe soi as first step
	y - (-6) = their $m(x - 6)$ o.e.	M1	or M1 for $y =$ their $m \times x + c$ then subst (6, -6)
	y = 0.75x - 10.5 o.e. isw	A1	eg A1 for $4y = 3x - 42$
			allow B4 for correct equation www isw
11 (iv)	centre C is at (12, -14) cao	B2	B1 for each coord
	circle is $(x - 12)^2 + (y + 14)^2 = 100$	B1	ft their C if at least one coord correct

4751

12 (i)	10	1	
12 (ii)	$[x =] 5 \text{ or ft their (i)} \div 2$	1	not necessarily ft from (i) eg they may start again with calculus to get $x = 5$
	ht = 5[m] cao	1	
12 (iii)	d = 7/2 o.e.	M1	or ft their (ii) -1.5 or their (i) $\div 2 - 1.5$ o.e.
	$[y =] 1/5 \times 3.5 \times (10 - 3.5)$ o.e. or ft	M1	or $7 - 1/5 \times 3.5^2$ or ft
	= 91/20 o.e. cao isw	A1	or showing $y - 4 = 11/20$ o.e. cao
12 (iv)	$4.5 = 1/5 \times x(10 - x)$ o.e.	M1	
	22.5 = x(10 - x) o.e.	M1	eg 4.5 = $x(2 - 0.2x)$ etc
	$2x^2 - 20x + 45 = 0$ o.e. eg $x^2 - 10x + 22.5 = 0$ or $(x - 5)^2 = 2.5$	A1	cao; accept versions with fractional coefficients of x^2 , isw
	$[x=]\frac{20\pm\sqrt{40}}{4}$ or $5\pm\frac{1}{2}\sqrt{10}$ o.e.	M1	or $x-5 = [\pm]\sqrt{2.5}$ o.e.; ft their quadratic eqn provided at least M1 gained already; condone one error in formula or substitution; need not be simplified or be real
	width = $\sqrt{10}$ o.e. eg $2\sqrt{2.5}$ cao	A1	accept simple equivalents only