4721 Core Mathematics 1

(ii) Translation

1 unit right parallel to x axis

B1
B1

2 Allow:
1 unit right,
1 along the x axis,
1 in x direction,
allow vector notation e.g. $\binom{1}{0}$,
1 unit horizontally

4

When $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-4$
\therefore Gradient of normal to curve $=\frac{1}{4}$
$y+1=\frac{1}{4}(x-2)$
M1
Correct equation of straight line through $(2,-1)$, any nonzero numerical gradient
$x-4 y-6=0$
Attempt to differentiate (one of $3 x^{2},-8 x$)
Correct derivative
Substitutes $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$

Must be numerical

$$
=-1 \div \text { their } m
$$

-

A1
7 Correct equation in required form
(i) $m=4$

B1 1 May be embedded

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
Alternative method: \\
Equation of straight line through \((1,6)\) with \(m=2.3\) found then \(\mathrm{a}^{2}+5=2.3 \mathrm{a}+\) " c " seen M1 \\
with \(c=3.7\) \\
A1 \\
then as main scheme
\end{tabular}} \& \& \& \\
\hline (iii) \& A value between 2 and 2.3 \& B1 \& 1 \& \(2<\) value < 2.3 (strict inequality signs) \\
\hline 7 (i) \& \begin{tabular}{l}
(a) Fig 3 \\
(b) Fig 1 \\
(c) Fig 4
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& 3 \& \\
\hline (ii) \& \(-(x-3)^{2}\)
\(y=-(x-3)^{2}\) \& M1

A1 \& 2 \& | Quadratic expression with correct x^{2} term and correct y-intercept and/or roots for their unmatched diagram (e.g. negative quadratic with y-intercept of -9 or root of 3 for Fig 2) |
| :--- |
| Completely correct equation for Fig 2 |

\hline 8 (i) \& \[
$$
\begin{aligned}
& \text { Centre }(-3,2) \\
& (x+3)^{2}-9+(y-2)^{2}-4-4=0 \\
& r^{2}=17 \\
& r=\sqrt{17}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| |
| A1 | \& 3 \& | Correct method to find r^{2} |
| :--- |
| Correct radius |

\hline (ii) \& $$
x^{2}+(3 x+4)^{2}+6 x-4(3 x+4)-4=0
$$

\[
$$
\begin{aligned}
& 10 x^{2}+18 x-4=0 \\
& (5 x-1)(x+2)=0 \\
& x=\frac{1}{5} \quad \text { or } x=-2 \\
& y=\frac{23}{5} \quad \text { or } y=-2
\end{aligned}
$$

\] \& | M1* |
| :--- |
| A1 |
| A1 |
| M1 |
| dep |
| A1 |
| A1 | \& 9 \& | substitute for x / y or attempt to get an equation in 1 variable only correct unsimplified expression obtain correct 3 term quadratic correct method to solve their quadratic |
| :--- |
| SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1 |

\hline $$
\begin{array}{ll}
\hline 9 & \text { (i) }
\end{array}
$$ \& \[

\mathrm{f}^{\prime}(x)=-x^{-2}-\frac{1}{2} x^{-\frac{1}{2}}

\] \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& \& | Attempt to differentiate |
| :--- |
| $-x^{-2}$ or $-\frac{1}{2} k x^{-\frac{1}{2}} \mathbf{w w w}$ |
| Fully correct expression |

\hline
\end{tabular}

