4721 Mark Scheme 4721 Core Mathematics 1

					2
1		$[(x-6)^2-36]+1$	B1		$(x-6)^2$
		$=(x-6)^2-35$	M1		$q = 1 - (\text{their } p)^2$
			A1	3	q = -35
2	(i)			3	
2	(1)		B1 B1	2	For $x < 0$, straight line joining (-2, 0) and (0, 4) For $x > 0$, line joining (0,4) to (2, 2) and horizontal line joining (2,2) and (4,2)
	(ii)	Translation 1 unit right parallel to <i>x</i> axis	B1 B1	2	Allow: 1 unit right, 1 along the <i>x</i> axis, 1 in <i>x</i> direction , allow vector notation e.g. $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, 1 unit horizontally
3		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 8x$	M1		Attempt to differentiate (one
		$\frac{1}{dx} = 3x = 3x$	IVI I		Attempt to differentiate (one of $3x^2$, $-8x$)
			A1		Correct derivative
		When $x = 2$, $\frac{dy}{dx} = -4$	M1 A1		Substitutes $x = 2$ into their $\frac{dy}{dx}$
		: Gradient of normal to curve = $\frac{1}{4}$	B1 ft		Must be numerical $= -1 \div$ their m
		$y+1 = \frac{1}{4}(x-2)$	M1		Correct equation of straight line through $(2, -1)$, any non- zero numerical gradient
		x - 4y - 6 = 0	A1	7 7	Correct equation in required form

	21	Mark Scheme			January 201
4	(i)	m = 4	B 1	1	May be embedded
	(ii)	$6p^2 = 24$	M1		$(\pm)6p^2 = 24$
		$p^2 = 4$			or $36p^4 = 576$
		p = 2 or $p = -2$	A1 A1	3	
		-			
	(iii)	$5^{2n+4} = 25$	M1		Addition of indices as powers of 5
		$\therefore 2n+4=2$	M1	3	Equate powers of 5 or 25
		n = -1	A1	7	
5		$k = \sqrt{x}$			
		$k^2 - 8k + 13 = 0$	M1*		Use a substitution to obtain a quadratic (may be implied by squaring or rooting later) or factorise into 2 brackets each containing \sqrt{x}
		$k - 4 = \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{(-8)^2 - 4 \times 1 \times 13}}{2}$	M1 dep A1		Correct method to solve resulting quadratic
		$k = 4 \pm \sqrt{3}$	A1		$k = 4 \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{12}}{2}$
					or $k = 4 \pm \frac{\sqrt{12}}{2}$
		$\therefore x = (4 + \sqrt{3})^2$ or $x = (4 - \sqrt{3})^2$	M1		Recognise the need to square to obtain x
			M1		Correct method for squaring $a + \sqrt{b}$ (3 or 4 term expansion)
		$x = 19 \pm 8\sqrt{3}$ or $19 \pm 4\sqrt{12}$	A1	7 7	
6	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$	B1*		
		When $x = 1$, $\frac{dy}{dx} = 2$	B1 dep	2	
	(ii)	$\frac{a^2 + 5 - 6}{a - 1} = 2.3$	M1		uses $\frac{y_2 - y_1}{y_1 - y_1}$
		a-1 - 2.5	A1		$x_2 - x_1$ correct expression
		$a^2 - 2.3a + 1.3 = 0$	M1		correct method to solve a
		$a^{-2.3a+1.3} = 0$ (a-1.3)(a-1) = 0	1411		quadratic or correct factorisation and cancelling to get $a + 1 = 2.3$
		<i>a</i> =1.3	A1	4	1.3 only

		Alternative method: Equation of straight line through (1,6) with			
		m = 2.3 found then			
		$a^2 + 5 = 2.3a + "c"$ seen M1			
		with $c = 3.7$ A1			
		then as main scheme			
	(iii)	A value between 2 and 2.3	B1	1 7	2 < value < 2.3 (strict inequality signs)
7	(i)	(a) Fig 3	B1		
		(b) Fig 1	B1		
		(c) Fig 4	B1	3	
	(ii)	$-(x-3)^2$	M1		Quadratic expression with correct x^2 term and correct y-intercept and/or roots for their unmatched diagram (e.g. negative quadratic with y-intercept of -9 or root of 3 for Fig 2)
		$y = -(x-3)^2$	A1	2 5	Completely correct equation for Fig 2
8	(i)	Centre (-3, 2)	B1		
		$(x+3)^{2}-9+(y-2)^{2}-4-4=0$	M1		Correct method to find r^2
		$r^2 = 17$			
		$r = \sqrt{17}$	A1	3	Correct radius
	(ii)	$x^{2} + (3x+4)^{2} + 6x - 4(3x+4) - 4 = 0$	M1*		substitute for x/y or attempt to get an equation in 1 variable only
			A1		correct unsimplified expression
		$10x^{2} + 18x - 4 = 0$ (5x-1)(x+2) = 0 $x = \frac{1}{5} \text{ or } x = -2$	A1 M1 dep A1		obtain correct 3 term quadratic correct method to solve their quadratic
		$y = \frac{5}{5}$ or $y = -2$	A1	6 9	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1
9	(i)	$f'(x) = -x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$	M1		Attempt to differentiate
		2	A1		$-x^{-2}$ or $-\frac{1}{2}kx^{-\frac{1}{2}}$ www

	(ii)	$f''(x) = 2x^{-3} + \frac{1}{4}x^{-\frac{3}{2}}$	M1		Attempt to differentiate their f
		4	A1 ft		(<i>x</i>) One correctly differentiated
			A1		term Fully correct expression www
		2 1 1	AI		in either part of the question
		$f''(4) = \frac{2}{4^3} + \frac{1}{4} \cdot \frac{1}{8}$	M1		Substitution of $x = 4$ into their $f''(x)$
		$=\frac{1}{16}$	A1	5 8	oe single fraction www in either part of the question
10		$(-30)^2 - 4 \times k \times 25k = 0$	M1		Attempts $b^2 - 4ac$ involving k
		$900 - 100k^2 = 0$	M1		States their discriminant $= 0$
		k = 3 or $k = -3$	B1 B1	4 4	
11	(i)	P = 2 + x + 3x + 2 + 5x + 5x = 14x + 4	M1		Adds lengths of all 4 edges with attempt to use Pythagoras
			4.1	2	to find the missing length
	(ii)	Area of rectangle = $3x(2+x) = 6x + 3x^2$	A1 M1	2	May be left unsimplified Correct method – splitting or
		-			formula for area of trapezium
		Area of triangle $=\frac{1}{2}(3x)(4x) = 6x^2$			
		Total area = $9x^2 + 6x$	A1	2	Convincing working leading to given expression AG
	(iii)	$14x + 4 \ge 39$	B1 ft		ft on their expression for <i>P</i> from (i) unless restarted in (iii). (Allow >)
		$\frac{5}{2}$	B 1		o.e. (e.g. $\frac{35}{14}$) soi by
		0^{2} · ϵ	D1		subsequent working
		$9x^{2} + 6x < 99$ $3x^{2} + 2x - 33 < 0$	B 1		Allow \leq
		(3x+11)(x-3) < 0	M1		
		$\left(-\frac{11}{3}<\right)x<3$			Correct method to find critical values
			B1		
					x < 3 identified
		5	M1		root from linear < <i>x</i> < upper root from quadratic
		$\therefore \frac{5}{2} \le x < 3$	A1	7 11	Fully correct including inequality signs or exact equivalent in words cwo
		Total		72	
		- V VWA			