Mark Scheme

4752 (C2) Concepts for Advanced Mathematics

4752

1		$\frac{1}{2}x^2 + 3x^{-1} + c$ o.e.	3	1 for each term	3
2	(i)	5 with valid method	1	eg sequence has period of 4 nos.	
	(ii)	165 www	2	M1 for $13 \times (1 + 3 + 5 + 3) + 1 + 3 + 5$ or for $14 \times (1 + 3 + 5 + 3) - 3$	3
3		rt angled triangle with $\sqrt{2}$ on one side	1	or M1 for $\cos^2 \theta = 1 - \sin^2 \theta$ used	
		Pythag. used to obtain remaining side $=\sqrt{7}$	1	A1 for $\cos \theta = \frac{\sqrt{7}}{\sqrt{9}}$	
		$ \tan \theta = \frac{opp}{adj} = \frac{\sqrt{2}}{\sqrt{7}} \text{ o.e.} $	1	A1 for $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{2}}{\sqrt{7}}$ o.e.	3
4		radius = 6.5 [cm]	3	M1 for $\frac{1}{2} \times r^2 \times 0.4$ [= 8.45] o.e.	3
				and M1 for $r^2 = \frac{169}{4}$ o.e. [= 42.25]	5
5	(i)	sketch of correct shape with P ($-0.5,2$) Q ($0,4$) and R ($2,2$)	2	1 if Q and one other are correct	
	(ii)	sketch of correct shape with P $(-1,0.5)$ Q $(0,1)$ and R $(4,0.5)$	2	1 if Q and one other are correct	4
6	(i)	205	3	M1 for AP identified with $d = 4$ and M1 for $5 + 50 d$ used	
	(ii)	$\frac{25}{3}$ o.e.	2	M1 for $r = \frac{2}{5}$ o.e.	5
7	(i)	$\frac{\sin A}{\sin A} = \frac{\sin 79}{\sin 79}$ s.o.i.	M1		
		5.6 8.4 [A =] 40.87 to 41	A1		
	(ii)	$[BC^{2} =] 5.6^{2} + 7.8^{2} - 2 \times 5.6 \times 7.8 \times$	M1		
		$\cos((180-79'))$ = 108.8 to 108.9	A1 A1		5
		[BC =] 10.4()			
8		$y' = 3x^{-\frac{1}{2}}$	M1	condone if unsimplified	
		$\frac{3}{4}$ when $x = 16$	A1		
		y = 24 when $x = 16y - their 24 = their 3/4 (x - 16)$	B1 M1	4.	
		$y - 24 = \frac{3}{4} (x - 16)$ o.e.	A1	dependent on $\frac{dy}{dx}$ used for <i>m</i>	5

4752	52 Mark		Sche	me January 2	January 2010	
9	(i)	У 🛉	G1	for curve of correct shape in both		
				quadrants		
			DC1	must as through (0, 1) shows		
			DGI	must go through (0, 1) shown		
		X				
	(ii)	$2x + 1 = \frac{\log 10}{\log 10}$ o.e.	M1	or M1 for $2x + 1 = \log_3 10$	5	
		log 3	A2	A1 for other versions of 0.547or 0.548		
		[x =] 0.55				
10	(i)	$3x^2 - 6x - 9$	M1			
		use of their $y' = 0$	M1			
		x = -1				
		x = 3	M1			
		of turning point				
		max at $x = -1$ and min at $x = 3$	A1	c.a.o.	6	
	(ii)	$x(x^2 - 3x - 9)$	M1			
		$3\pm\sqrt{45}$ 3.2 9				
		$\frac{1}{2}$ or $(x - \frac{3}{2})^2 = 9 + \frac{1}{4}$	M1			
		$3\sqrt{45}$				
		$0, \frac{5}{2} \pm \frac{\sqrt{45}}{2}$ o.e.	AI		3	
		sketch of cubic with two turning	G1			
	()	points correct way up				
		x-intercepts – negative, 0, positive	DG1		2	
		shown				
11	(i)	47.625 $[m^2]$ to 3 sf or more, with	4	M3 for $\frac{1.5}{1.5}$ × (2.3 + 2 + 2)(2.7 + 3.3 + 4 +		
		correct method shown		$\frac{1}{2}$ x (2.5 + 2 + 2[2.7 + 5.5 + 4 +	4	
				4.8 + 5.2 + 5.2 + 4.4])		
		12.05				
	(11)	43.05	2	M1 IOF 1.5 \times (2.2+2.7+2.2+4+4.8+5.2+4.4+2)	2	
				$1.3 \land (2.3+2.7+3.3+4+4.8+3.2+4.4+2)$		
	(iii)	$-0.013x^{4}/4 + 0.16x^{3}/3 - 0.082x^{2}/2 +$	M2	M1 for three terms correct		
	Ì	2.4 <i>x</i> o.e.				
		their integral evaluated at $x = 12$ (and	M1	dep on integration attempted		
		0) only				
		47.6 to 47.7	A1		4	
	(i-1)	5.30 found	1			
	(1)	compared with 5.2 s.o.i			2	
		compared with 5.2 s.o.i.			2	
12	(i)	$\log P = \log a + bt$ www	1			
		comparison with $y = mx + c$ s.o.i.	1	must be with correct equation		
		intercept = $\log_{10} a$	1	dependent on correct equation	3	
	(ii)	[2.12, 2.21], 2.32, 2.44, 2.57, 2.69	1			
		plots ft miled line of best fit		P_{atwaan} (10, 2,08) and (10, 2,12)	2	
		ruled line of dest fit	1	between (10, 2.08) and (10, 2.12)	3	

(iii) $0.0100 \le m < 0.0125$ $a = 10^{c}$ or $\log a = c$ $P = 10^{c} \times 10^{mt}$ or 10^{mt+c} B1 $M1$ for $\frac{y - \text{step}}{x - \text{step}}$ B1 $1.96 \le c \le 2.02$ B1 f.t. their m and a					
$a = 10^c$ or $loga = c$ $B1$ $1.96 \le c \le 2.02$ 4 $P = 10^c \times 10^{mt}$ or 10^{mt+c} $B1$ $f.t.$ their m and a 4	(iii)	$0.0100 \le m < 0.0125$	B2	M1 for $\frac{y - \text{step}}{x - \text{step}}$	
$P = 10^{\rm c} \times 10^{\rm mt}$ or $10^{\rm mt+c}$ B1 f.t. their m and a		$a = 10^{c}$ or $loga = c$	B1	$1.96 \le c \le 2.02$	
		$P = 10^{\rm c} \times 10^{\rm mt} \text{ or } 10^{\rm mt+c}$	B1	f.t. their m and a	4
(iv) use of $t = 105$ 1.0 - 2.0 billion approx B1 B1	(iv)	use of $t = 105$ 1.0 – 2.0 billion approx	B1 B1		
unreliable since extrapolation o.e. E1 3		unreliable since extrapolation o.e.	E1		3