4722 Mark Scheme 4722 Core Mathematics 2

1	(i)	$2(1 - \cos^2 x) = 5\cos x - 1$ $2\cos^2 x + 5\cos x - 3 = 0$ A.G.	M1 A1 2	Use $\sin^2 x = 1 - \cos^2 x$ Show given equation correctly
	(ii)	$(2\cos x - 1)(\cos x + 3) = 0$ $\cos x = \frac{1}{2}$ $x = 60^{\circ}$ $x = 300^{\circ}$	M1 M1 A1 A1√ 4	Recognise equation as quadratic in cos x and attempt recognisable method to solve Attempt to find x from root(s) of quadratic Obtain 60° or $\pi/_3$ or 1.05 rad Obtain 300° only (or 360° – their x) and no extra in range SR answer only is B1 B1
2	(i)	$\int (6x-4)\mathrm{d}x = 3x^2 - 4x + c$	M1*	Attempt integration (inc. in power for at
		$y = 3x^{2} - 4x + c \Longrightarrow 5 = 12 - 8 + c$ $\Longrightarrow c = 1$ Hence $y = 3x^{2} - 4x + 1$	A1 M1dep* A1 4	least one term) Obtain $3x^2 - 4x$ (or unsimplified equiv), with or without + c Use (2, 5) to find c Obtain $y = 3x^2 - 4x + 1$
	(ii)	$3p^{2} - 4p + 1 = 5$ $3p^{2} - 4p - 4 = 0$ (p - 2) (3p + 2) = 0 $p = \frac{-2}{3}$	M1* M1dep* A1 3	Equate their <i>y</i> (from integration attempt) to 5 Attempt to solve three term quadratic Obtain $p = \frac{-2}{3}$ (allow any variable) from correct working; condone $p = 2$ still present, but A0 if extra incorrect solution
3	(i)	$(2-x)^7 = 128 - 448x + 672x^2 - 560x^3$	M1 A1 A1 A1 4	Attempt (at least) two relevant terms – product of binomial coeff, 2 and x (or expansion attempt that considers all 7 brackets) Obtain $128 - 448x$ Obtain $672x^2$ Obtain $-560x^3$
	(ii)	$-560 \times (1/4)^3 = -35/4$	M1 A1 2	Attempt to use coeff of x^3 from (i), with clear intention to cube $1/4$ Obtain $-35/4$ (w^6), (allow $35/4$ from $+560x^3$ in (i))

4722		Mark Scheme			January 2010
4	(i)	$\int_{3}^{5} \log_{10} (2+x) dx \approx \frac{1}{2} \times \frac{1}{2} \times (\log 5 + 2\log 5.5 + 1)$	M1		Attempt <i>y</i> -coords for at least 4 of the correct 5 <i>x</i> -coords only
		$2\log 6 + 2\log 6.5 + \log 7$	M1		Use correct trapezium rule, any h , to find area between $x = 3$ and $x = 5$
		≈ 1.55	M1 A1	4	Correct h (soi) for their y-values Obtain 1.55
	(ii)	$\int_{3}^{5} \log_{10}(2+x)^{\frac{1}{2}} dx = \frac{1}{2} \int_{3}^{5} \log_{10}(2+x) dx$	B1√		Divide by 2, or equiv, at any stage to obtain 0.78 or 0.77,
		$\approx \frac{1}{2} \times 1.55$ ≈ 0.78	B1	2	following their answer to (i) Explicitly use $\log \sqrt{a} = \frac{1}{2} \log a$ on a single term
3	3			6	
5	$\int_{1} \left\{ (11 - (3 - (3 - (3 - (3 - (3 - (3 - (3 $	$9x^{-2} - (x^{2} + 1) dx = [9x^{-1} - \frac{1}{3}x^{3} + 10x]_{1}^{3}$ - 9 + 30) - (9 - $\frac{1}{3}$ + 10)	M1 M1		Attempt subtraction (correct order) at any point Attempt integration – inc. in power for at
					least one term
	= 24 = $5^{1}/_{3}$	$-18^{2}/_{3}$	A1 M1		Obtain $\pm (-\frac{1}{3}x^3 + 10x)$ or $11x$ and $\frac{1}{3}x^3 + x$ Obtain remaining term of form kx^{-1}
	OR	$-9x^{-1}\Big]_{1}^{3} - \Big[\frac{1}{2}x^{3} + x\Big]_{1}^{3}$	A1 M1		Obtain $\pm 9x^{-1}$ or any unsimplified equiv
	μ1 <i>x</i> +	$-9x$ $J_1 - [\frac{1}{3}x + x]_1$	IVII		Use limits $x = 1, 3 - \text{correct order } \&$ subtraction
	= 16	$(3+3) - (11+9)] - [(9+3) - (^{1}/_{3} + 1)] - 10^{2}/_{3}$	A1	7	Obtain $5^{1}/_{3}$, or exact equiv
	$=5^{1}/_{3}$	$=5^{1}/_{3}$		7	
6	(i)	$\mathbf{f}(-3) = 0 \Longrightarrow -54 + 9a - 3b + 15 = 0$	M1		Attempt $f(-3)$ and equate to 0, or equiv
		3a - b = 13	A1		method Obtain $3a - b = 13$, or unsimplified equiv
		$f(2) = 35 \Longrightarrow 16 + 4a + 2b + 15 = 35$	M1		Attempt $f(2)$ and equate to 35, or equiv method
		2a + b = 2	A1		Obtain $2a + b = 2$, or unsimplified equiv
		Hence $a = 3, b = -4$	M1 A1	6	Attempt to solve simultaneous eqns Obtain $a = 3$, $b = -4$
(ii)	f(<i>x</i>) =	$(x+3)(2x^2-3x+5)$	M1		Attempt complete division by $(x + 3)$, or
			A1		equiv Obtain $2x^2 - 3x + c$ or $2x^2 + bx + 5$, from
	ie qu	otient is $(2x^2 - 3x + 5)$	A1	3	correct $f(x)$ Obtain $2x^2 - 3x + 5$ (state or imply as quotient)
				9	· ·

4722 7	2 (i)	$13^2 = 10^2 + 14^2 - 2 \times 10 \times 14 \times \cos \theta$ $\cos \theta = 0.4536$	Mark Schei	me M1		January 2010 Attempt to use correct cosine rule in ΔABC
		$\theta = 1.10$ A.G.		A1	2	Obtain 1.10 radians (allow 1.1 radians) SR B1 only for verification of 1.10, unless complete method
	(ii)	arc $EF = 4 \times 1.10 = 4.4$		B1		State or imply $EF = 4.4$ cm (allow 4×1.10)
		perimeter = $4.4 + 10 + 13 + 6$		M1		Attempt perimeter of region - sum of arc and three sides with attempt to subtract 4 from at least one relevant side
		= 33.4 cm		A1	3	Obtain 33.4 cm
	(iii)	area $AEF = \frac{1}{2} \times 4^2 \times 1.1$		M1		Attempt use of $(\frac{1}{2}) r^2 \theta$, with $r = 4$ and $\theta = 1.10$
		= 8.8 area $ABC = \frac{1}{2} \times 10 \times 14 \times \sin 1.1$		A1 M1		Obtain 8.8 Attempt use of $(\frac{1}{2})ab\sin\theta$, sides consistent
		= 62.4		A1		with angle used Obtain 62.4 or better (allow 62.38 or
		hence total area = 53.6 cm^2		A1	5	62.39) Obtain total area as 53.6 cm^2
				1	0	
8	(i)	$u_5 = 8 + 4 \times 3$		M1		Attempt $a + (n - 1)d$ or equiv inc list of terms
		= 20 A.G.		A1	2	Obtain 20
	(ii)	$u_n = 3n + 5$ ie $p = 3, q = 5$		B1		Obtain correct expression, poss unsimplified, eg $8 + 3(n - 1)$
				B1	2	Obtain correct $3n + 5$, or $p = 3$, $q = 5$ stated
	(iii)	arithmetic progression		B1	1	Any mention of arithmetic
	(iv)	$\frac{2N}{2}(16+(2N-1)3)-\frac{N}{2}(16+(N-1)3)=$	1256	M1		Attempt S_N , using any correct formula
		$26N + 12N^2 - 13N - 3N^2 = 2512$		M1		(inc $\sum (3n + 5)$) Attempt S_{2N} , using any correct formula, with 2N consistent (inc $\sum (3n + 5)$)
		$9N^2 + 13N - 2512 = 0$		M1*		Attempt subtraction (correct order) and equate to 1256
		(9N + 157)(N - 16) = 0		M1de	-	Attempt to solve quadratic in N
		<i>N</i> = 16		A1	5 D.D. o	Obtain $N = 16$ only, from correct working
				M1	vr. a	Iternative method is to use $n/2$ $(a + l) = 1256$ Attempt given difference as single summation with N terms
				M1 M1		Attempt $a = u_{N+1}$ Attempt $l = u_{2N}$
				M1		Equate to 1256 and attempt to solve quadratic
				A1	0	Obtain $N = 16$ only, from correct working

A1	Reasonable graph in both quadrants Correct graph in both quadrants State or imply (0, 6)
	Introduce logarithms throughout, or equiv
$x \log 9 = \log 150 $ M1	with \log_9 Use $\log a^b = b \log a$ and attempt correct method to find x
	Obtain $x = 2.28$
	Form eqn in x and take logs throughout (any base)
	Use log $a^{b} = b \log a$ correctly on log 5 ^{<i>x</i>} or log 9 ^{<i>x</i>} or legitimate combination of these two
	Use $\log ab = \log a + \log b$ correctly on $\log (6 \times 5^x)$ or $\log 6$
$\log_{3} 3 + \log_{3} 2 + x \log_{3} 5 = 2x $ M1	Use $\log_3 9 = 2$ or equiv (need base 3 throughout that line)
$x (2 - \log_3 5) = 1 + \log_3 2$	
$x = \frac{1 + \log_3 2}{2 - \log_3 5} \text{A.G.} $ A1 5	Obtain $x = \frac{1 + \log_3 2}{2 - \log_3 5}$ convincingly
	(inc base 3 throughout)
11	