
			TO BE ANSWERED ON INSERT	
l (i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	Evidence of updating at <i>C</i> , <i>D</i> , <i>E</i> or <i>F</i> All temporary labels correct, with no extras	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	All permanent labels correct	
	Path: $A - B - C - D - E - F$ $3 \mid 4$ $5 \mid 6$ $7 \mid 6$ $10 \mid 9$ $10 \mid 9$	B1	сао	
	Weight: 9	B1	cao	[5
(ii)	Total weight of all arcs = 25 Only odd nodes are <i>B</i> and <i>E</i> . Least weight path	B1	Total weight = 25 (may be implied from weight)	
	joining B to E is $B - C - E = 3$.	M 1	B to $E = 3$	
	Weight: 28 Route: (example)	A1	28 (cao)	
	A-B-D-F-E-C-B-C-D-E-D-C-A	B1	A valid closed route that uses <i>BC</i> , <i>CD</i> and <i>DE</i> twice and all other arcs once	[4
(iii)	A-B-E-F	B1	cao	1
	Graph is now Eulerian, so no need to repeat arcs	B1	Eulerian (or equivalent)	[2
	1	1	Total =	11

4736 Decision Mathematics 1

Mark Scheme

2	(i)	A graph cannot have an odd number of odd vertices (nodes)	B1	Or equivalent (eg $3 \times 5 = 15 \Rightarrow 7\frac{1}{2}$ arcs) Not from a diagram of a specific case	[1]
	(ii)	It has exactly two odd nodes eg CABCDEAD	B1 B1	2 odd nodes A valid semi-Eulerian trail	[2]
	(iii)	AE = 2 $AC = 3$ $AB = 5$ $CD = 7$ $Weight = 17$	B1 B1 B1	Correct tree (vertices must be labelled) Order of choosing arcs in a valid application of Prim, starting at <i>A</i> (working shown on a network or matrix) 17	[3]
	(iv)	Lower bound = 29 A - E - D - F - C - B - A = 34 F - C - A - E - D and $F - D - C - A - EVertex B is missed out$	B1 M1 A1 B1	29 or 12 + their tree weight from (iii) A - E - D - F - C - 34, from correct working seen Correctly explaining why method fails, need to have explicitly considered both cases	[4]
				Total =	10

3 (i)	x = number of clients who use program X y = number of clients who use program Y	B1	Number of clients on X and Y, respectively	[1]
(ii) (iii)	Spin cycle: $30x + 10y \le 180$ $\Rightarrow 3x + y \le 18$ Rower: $10x \le 40$ $\Rightarrow x \le 4$ Free weights: $20x + 30y \le 300$ $\Rightarrow 2x + 3y \le 30$ Both must take non-negative integer values	B1 B1 B1 B1	$3x + y \le 18$, or equivalent, simplified $x \le 4$, or equivalent, simplified $2x + 3y \le 30$, or equivalent, simplified Allow use of slack variables instead of inequalities Non-negative <u>and</u> integer Accept $x + y \le 12$ as an alternative answer	[3]
(iv)		B1 M1 A1	Axes scaled and labelled appropriately (on graph paper) Boundaries of their three constraints shown correctly (non-negativity may be missed) Correct graph with correct shading or feasible region correct and clearly identified (non-negativity may be missed) (cao)	[3]
	Checking vertices or using a profit line $(4, 6) \rightarrow 72$ $(3\frac{3}{7}, 7\frac{5}{7}) \rightarrow 77\frac{1}{7}$ or $(24/7, 54/7) \rightarrow 77\frac{1}{7}$ $(0, 10) \rightarrow 60$ $(4, 0) \rightarrow 36$	M1	Follow through their graph if possible $x = 3.4, y = 7.7$ may be implied from (3, 8)	
	Checking other feasible integer points near (non-integer) optimum for continuous problem $(3, 8) \rightarrow 75$	M1	Could be implied from identifying point (3, 8) in any form	
	Put 3 clients on program X , 8 on program Y and 1 on program Z	A1	cao, in context and including program Z	[3]
			Total =	11

4 (i)	A A A A A A A A A A A A A A A A A A A A A C C B B B B B B B B B	B1	15 A's, 4 D's, 3 C's, 8B's (but not just A D C B)	
	Box 1 A A A A A Box 2 A A A A A Box 3 A A A A A Box 4 D D D C C C B Box 4 B B B B B B B B B	M1 M1 A1	Three boxes each containing <i>A A A A A A</i> (or shown using weights) A box containing all the rest Completely correct, including order of packing into boxes	
	Cannot fit all the items into box 4 There is only room for one <i>B</i> in a box	B1	Any identification of a (specific) volume conflict	[5]
(ii)	B B B B B B B B C C C D D D A	B1	8 B's, 3 C's, 4 D's, 15 A's (but not just B C D A)	
	Box 1BDAABox 2BDAA	M1	Four boxes each containing <i>B D A A</i> (in any order)	
	Box 3 B D A A Box 4 B D A A Box 5 B A A A A Box 6 B A A A A A	M1	Using exactly 9 boxes, the first eight of which each contain a B (with or without other items) and the ninth contains three C 's.	
	Box 7 B Box 8 B Box 9 C C	A1	Completely correct, including order of packing into boxes	
	Box 5 is over the weight limit More than five A's is too heavy for one box	B1	Any identification of a (specific) weight conflict	[5]
(iii)	Items may be the wrong shape for the boxes eg too tall	B1	Reference to shape, height, etc. but not practical issues connected with the food	[1]
			Total =	11

Item type	Α	В	С	D
Number to be packed	15	8	3	4
Length (cm)	10	40	20	10
Width (cm)	10	30	50	40
Height (cm)	10	20	10	10
Volume (cm ³)	1 000	24 000	10 000	4 000
Weight (g)	1 000	250	300	400

49

(ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	Constraint rows correct, with three slack	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	variable columns Objective row correct	[2]
	<i>x</i> and <i>z</i> columns have negative entries in objective row, but <i>z</i> column has no positive entries in constraint rows, so pivot on <i>x</i> col $8 \div 1 = 8$; $66 \div 2 = 33$; $40 \div 4 = 10$ Least ratio is $8 \div 1$, so pivot on 1 from <i>x</i> col	M1 A1	Choosing to pivot on x column (may be implied from pivot choice) Calculations seen or referred to and correct pivot choice made (cao)	[2]
	New row $2 = row 2$ New row $1 = row 1 + 2(new row 2)$ New row $3 = row 3 - 2(new row 2)$	M1	Pivot ensite made (eds) Pivot row unchanged (may be implied) or follow through for their +ve pivot	[2]
		A1	Calculations for other rows shown (cao)	[2]
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	An augmented tableau with three basis columns, non-negative values in final column and value of objective having not decreased	[2]
	x = 8, y = 0, z = 0	B1	Non-negative values for x , y and z from	[2]
	$x = 8 \Rightarrow a = 20 - 8 = 12$	M1	Putting their values for x , y and z into	
	$y = 0 \Rightarrow b = 10 - 0 = 10$ $z = 0 \Rightarrow c = 8 - 0 = 8$	A1	a = 20 - x, $b = 10 - y$ and $c = 8 - zCorrect values for a, b and c, from theirnon-negative x, y and z$	[3]
(iii)	$x \le 20, \ y \le 10 \text{ and } z \le 8$	M1 A1	20, 10, 8 Correct inequalities for <i>x</i> , <i>y</i> and <i>z</i>	[2]
(i)	iii)	entries in constraint rows, so pivot on x col $8 \div 1 = 8$; $66 \div 2 = 33$; $40 \div 4 = 10$ Least ratio is $8 \div 1$, so pivot on 1 from x col New row 2 = row 2 New row 1 = row 1 + 2(new row 2) New row 3 = row 3 - 2(new row 2) New row 4 = row 4 - 4(new row 2) $\frac{P \times y \times z \times t \times u \times RHS}{1 \times 0 \times 5 \times 3 \times 2 \times 0 \times 0 \times 16}$ $\frac{P \times y \times z \times t \times u \times RHS}{1 \times 0 \times 5 \times 3 \times 2 \times 0 \times 0 \times 16}$ $\frac{P \times y \times z \times t \times u \times RHS}{1 \times 0 \times 5 \times 3 \times 2 \times 0 \times 0 \times 16}$ $\frac{P \times y \times z \times t \times u \times RHS}{1 \times 0 \times 3 \times 10^{-2} \times 1$	entries in constraint rows, so pivot on x col $8 \div 1 = 8$; $66 \div 2 = 33$; $40 \div 4 = 10$ Least ratio is $8 \div 1$, so pivot on 1 from x col New row 2 = row 2 New row 1 = row 1 + 2(new row 2) New row 3 = row 3 - 2(new row 2) New row 4 = row 4 - 4(new row 2) M1 $\frac{p x y z s t u RHS}{1 0 5 -3 2 0 0 16}$ M1 M1 M1 M1 x = 8, y = 0, z = 0 $x = 8 \Rightarrow a = 20 - 8 = 12$ $y = 0 \Rightarrow b = 10 - 0 = 10$ $z = 0 \Rightarrow c = 8 - 0 = 8$ M1 $x \le 20, y \le 10$ and $z \le 8$ M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	entries in constraint rows, so pivot on x col 8+1 = 8; $66+2 = 33$; $40+4 = 10Least ratio is 8+1, so pivot on 1 from x colNew row 2 = row 2New row 1 = row 1 + 2(new row 2)New row 3 = row 3 - 2(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)New row 4 = row 4 - 4(new row 2)Null\frac{P}{1 \ 0 \ 5 \ -3 \ 2 \ 0 \ 0 \ 16}{0 \ 0 \ -2 \ -1 \ -2 \ 1 \ 0 \ 50}}\frac{1}{0 \ 0 \ -2 \ -1 \ -2 \ 1 \ 0 \ 50}}{0 \ 0 \ -2 \ -1 \ -2 \ 1 \ 0 \ 50}}x = 8, y = 0, z = 0x = 8, y = 0, z = 0x = 8, y = 0, z = 0x = 8 \Rightarrow a = 20 - 8 = 12y = 0 \Rightarrow b = 10 - 0 = 10z = 0 \Rightarrow c = 8 - 0 = 8N1Null Allx = 20 - x, b = 10 - y$ and $z = 8 - zCorrect values for x, y and z into a = 20 - x, b = 10 - y and c = 8 - zCorrect values for a, b and c, from their non-negative x, y and z$

6	(i)				
		$\frac{10}{\frac{1}{2}n(n-1)}$	B1 B1	10 1+2++(n -1) seen, or equivalent Check that sum stops at n -1 not n	[2]
	(ii)(a)	9	B1	Their 10 minus 1	
		1 2 3	M 1	1, 2 and 3	
		45	A1	45 following from method mark earned cao	[3]
(b)		1+2+3++(N-1)	M1	$1+2+3+\ldots+(N-1) \text{ or } \frac{1}{2}N(N-1),$	
		= $\frac{1}{2}N(N-1)$, where $N = \frac{1}{2}n(n-1)$ = $\frac{1}{4}n(n-1)(\frac{1}{2}n(n-1) - 1)$ (given)	A1	where $N = \frac{1}{2}n(n-1)$ Convincingly achieving the given result	[2]
	(iii)	M1 Vertices in treeM2 Arcs in treeM3 Vertices not in treeM4 Sorted list D E $D \mid 2 \mid E$ $ABCDE$ D E $D \mid 2 \mid E$ $A \mid C$ D E $D \mid 2 \mid E$ $B \mid C$ D $E \mid 2 \mid E$ $B \mid C$ D $E \mid 2 \mid E$ $B \mid C$ D $E \mid 2 \mid E$ $B \mid C$ D $E \mid 2 \mid E$ $B \mid C$ D $E \mid 2 \mid E$ $B \mid C$ D $E \mid 2 \mid E$ $B \mid C$ D $E \mid 2 \mid E$ $B \mid C$ D $E \mid 2 \mid E$ $A \mid 3 \mid E$ D $D \mid 2 \mid E$ $A \mid 3 \mid E$ $A \mid 4 \mid C$ $A \mid 4 \mid C$ $B \mid 6 \mid E$ $B \mid 6 \mid E$	M1 M1 M1 A1	(Order of entries in <i>M1</i> , <i>M2</i> and <i>M3</i> does not matter) Arc $\underline{A \mid 3 \mid E}$ is added to <i>M2</i> , <i>A</i> is added to <i>M1</i> and deleted from <i>M3</i> Arc $\underline{A \mid 4 \mid C}$ is added to <i>M2</i> , <i>C</i> is added to <i>M1</i> and deleted from <i>M3</i> Arc $\underline{C \mid 5 \mid D}$ is not added to <i>M2</i> and arc $\underline{B \mid 6 \mid E}$ is added to <i>M2</i> cao (lists <i>M1</i> , <i>M2</i> and <i>M3</i> totally correct, ignore what is done in list <i>M4</i>).	[4]
	(iv)	$30 \times \left(\frac{500}{100}\right)^4$	M1	Or equivalent	
		= 18750 seconds	A1	cao, with units (312 min 30 sec or 5 hours 12 min 30 sec)	[2]