4728 Mechanics 1

1 i	$v = 4.2 + 9.8 \times 1.5$	M1	Uses $v = u + gt$
	$v = 18.9 \text{ ms}^{-1}$.	A1	18.9(15) from $g = 9.81$
		[2]	
ii	$s = 4.2 \times 1.5 + 9.8 \times 1.5^{2}/2 \text{ or}$ $18.9^{2} = 4.2^{2} + 2 \times 9.8s$	M1	Uses $s = ut + gt^2/2$ or $v^2 = u^2 + 2gs$
	s = 17.325 m	A1 [2]	Accept 17.3
iii	$v^2 = 4.2 + 2 \times 9.8 \times (17.3(25) - 5)$	M1	$18.9^2 = u^2 + 2 \times 9.8 \times 5$
	$v = 16.1 \text{ ms}^{-1}$	A1	$u = 16.1 \text{ ms}^{-1}$.
		[2]	Accept answers close to 16.1 from correct working
2 i	Resolves a force in 2 perpendicular	M1	Diagram for vector addition/subtraction
	directions Uses Pythagoras	DM1	Uses Cosine Rule
	$R^2 = (12+19\cos 60)^2$	A1	$R^2 = 12^2 + 19^2$ -
	$+(19\sin 60)^2$	A1	$2 \times 12 \times 19 cos 120$
	R = 27.1 N	A1	R = 27.1
	$\{R = \sqrt{((19+12\cos 60)^2 + (12\sin 60)^2}) = 27.1\}$	[5]	
ii	Trig on a valid triangle for correct angle	M1	Either Pythagoras or vector add/sub triangle
	$\tan\theta = (19\sin 60)/(12 + 19\cos 60)$ etc	A1	$sin\theta/19 = sin120/(27.1) etc$
	Angle is 37.4°, 37.5°	A1	
		[3]	
3ia	$+/-(9m + 2 \times 0.8)$ { $+/-(3.5 \times 0.8 - 2 \times 0.8)$ }	B1	Before mom, or mom change Q, OK with g
	$+/-(-3.5m + 3.5 \times 0.8) $ { $+/-(9m + 3.5m)$ }	B1	After mom, or mom change P, OK with g
	$+/-(9m + 2 \times 0.8) = +/-(-3.5m + 3.5 \times 0.8)$	M1	Equates moms, or changes, accept with g
	m = 0.096 kg	A1	Do not award if g used
ib	+/0.006(0+/.2.5)	[4] M1	Haina hafara & aftar anada af Dar O na a
	+/-0.096(9+/-3.5) <i>OR</i> +/-0.8(3.5 -2) +/-1.2 kgms ⁻¹	A1ft	Using before & after speeds of P or Q, no g ft $12.5 \times \text{cv}(0.096)$
	1/-1.2 Kgms	[2]	11 12.5 × € ((0.070)
ii	(0.8+0.4)v or 0.8v + 0.4v	M1	Using Q and R common speed after, no g
	$3.5 \times 0.8 + 0.4 \times 2.75 = (0.8 + 0.4)v$	A1	2.8 + 1.1 = 1.2v
	$v = 3.25 \text{ ms}^{-1}$	A1	
		[3]	
4ia	0.3gcos 60 and 0.3gsin60	B1	Accept use of " $m = 0.1 \text{ kg}$ " for M1 and
	0.4gcos60 and 0.4gsin60 Calculates either relevant difference	B1 M1	0.1gcos60 (B1) 0.1gsin60 (B1)
	Perp = 0.1 gcos60 and Para = ± -0.1 gsin60	A1	= 0.49 and $= 0.849$ (accept 0.85 and 0.84)
	1 31-81-81-81-81-81-81-81-81-81-81-81-81-81	[4]	(
ib	$0.1gsin60 = \mu 0.1gcos60$	M1	$F = \mu R, F > R > 0$
	$= 1.73 \ (= \sqrt{3})$	A1	From correct R, F values
		[2]	

4 ii		M1	N2L for either particle no resolving, at least 1 unknown Formula round the pulley, M0A0.
	0.5 TD 0.5		But award M1 for T-0.4g = 0.4×1.09 etc
	0.5g - T = 0.5a T - $0.4g = 0.4a$	A1	later Both equations correct
	$a = 1.09 \text{ ms}^{-2}$	B1	Both equations correct
	T = 4.36 N	B1	
		[4]	
5 i	11 = 3 + 20a (a = 0.4)	M1	Uses $v = u + at$, no zero terms
	8 = 3 + (11-3)t/20	M1	Their a>0. $t/20 = (8-3)/(11-3)$ is M1M1
	t = 12.5	A1	
		[3]	
ii	$s(A,20) = 8 \times 20 \ (=160)$ $s(B,20) = (3+11) \times 20/2 =$	B1	Or s(A) = 8T
	$s(B,20) = (3 +11) \times 20/2 =$ $3 \times 20 + 0.4 \times 20^2/2 (=140)$	B1	or as stage of s(B)= $(3+11)\times 20/2 + 11\times (T-20)$
	$8T = (3+11) \times 20/2 + 11 \times (T-20)$	M1	3 part equation balancing distances
	or $(160 - 140) = 11t - 8t$	A1	o paro equation culturelling distances
	$T = 26 \ 2/3$	A1	Accept 26.6 or 26.7
		[5]	
iii	1.	B1	Linear rising graph (for A) starting at B's start
		B1	Non-linear rising graph for B below A's initially. Accept 2 straight lines as non-linear.
		ы	Single valued graphs graphs intersect and
		B1	continue
		[3]	
6 i	$a = 2 \times 0.006t - 0.18$	M1	Differentiates v (not v/t)
	a = 0.012t - 0.18	A1	Award for unsimplified form, accept +c, not
		[2]	+k
ii	0.012t - 0.18 = 0	M1*	Sets $a = 0$, and solves for t
	t = 15	A1	
	$0.006 \times 15^2 - 0.18 \times 15 + k = 0.65$	D*M1	Substitutes t(v(min)) in v(t)
	$0.006 \times 15^{2} - 0.18 \times 15 + k = 0.65$ k = 2 AG	A1 A1	
	K-Z AU	[5]	
iii	$s = 0.006t^3/3 - 0.18t^2/2 + 2t (+c)$	M1A1	Integrates v (not multiplies by t). Award if +c
	$(s = 0.002t^3 - 0.09t^2 + 2t (+c))$		omitted, accept kt
	t = 0, $s = 0$ hence $c = 0$	B1	Explicit, not implied (or uses limits 0, 28.4)
	$L = 0.002 \times 28.4^3 - 0.09 \times 28.4^2 + 2 \times 28.4$	M1	Substitutes 28.4 or 14.2 in s(t), (and k=2)
	L = 30.0 m	A1	Accept a r t 30(.0), accept +c
		[5]	

7 i	$(Fr =) 0.15 \times 600g\cos 10$ $(Wt cmpt =) 600g\sin 10$ $600 \times 0.11 = T - 0.15 \times 600g\cos 10 -$ $600g\sin 10$ (66 = T - 868.6 - 1021) T = 1960 N	B1 B1 M1 A1 A1 [5]	Implied by Fr = $0.15 \times 600 g \cos 10$ (=868.6) N2L. T with at least 1 resolved forces and 600×0.11 1955.6
ii a	$a(up) = +/-(600g\sin 10 + .15 \times 600g\cos 10)/600$ $a(up) = +/-3.15 \text{ ms}^{-2}$ AG	M1 A1 [2]	2 resolved forces and 600a or "unit mass" Disregard sign, accept 3.149
b	UP $v^2 = 2 \times 0.11 \times 10$ v = 1.48 when cable breaks t = 1.48/3.149 ($t = 0.471$ time for log to come to rest) $s = 1.48^2/(2 \times 3.149)$ s = 0.349 distance for log to come to rest	M1 A1 M1 M1	Correct, need not be accurate Or $1.48 = 0 + 3.15t$ Correct, need not be accurate
	DOWN a(down) = (600gsin10-0.15×600gcos10)/600 10+0.349= 0.254t ² /2 t = 9.025 T = (9.025 + 0.471) = 9.5 s	B1 M1 A1 A1 [9]	= 0.254 Needs a< 3.15, s>10. Or V^2 = 2×0.254× (10+0.349) [V= 2.29], V=0.254t Correct, need not be accurate Accept 9.49