CA SAN II

1. Use integration to find the exact value of

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} x \sin 2 x d x \\
& u=x \quad v^{\prime}=\sin 2 x \quad \Rightarrow-\frac{1}{2} x \cos 2 x+\frac{1}{2} \int \cos 2 x d x \\
& u^{\prime}=1 \quad v=-\frac{1}{2} \cos 2 x \\
&=\left[-\frac{1}{2} x \cos 2 x+\frac{1}{4} \sin 2 x\right]_{0}^{\frac{\pi}{2}} \\
&=\left(\frac{\pi}{4}\right)-(0)=\frac{\pi}{4}
\end{aligned}
$$

2. The current, $I \mathrm{amps}$, in an electric circuit at time t seconds is given by

$$
I=16-16(0.5)^{t}, \quad t \geqslant 0
$$

Use differentiation to find the value of $\frac{\mathrm{d} I}{\mathrm{~d} t}$ when $t=3$.
Give your answer in the form $\ln a$, where a is a constant.
a)

$$
\begin{aligned}
& \frac{d I}{d t}=-16\left(0.5^{t} \ln 0.5\right)=-16\left(0.5^{t} x-\ln 2\right) \\
& \begin{aligned}
\frac{d I}{d t} & =16 \ln 2 \times 0.5^{t} \quad t=3 \Rightarrow \frac{d I}{d t}
\end{aligned}=16 \ln 2 \times \frac{1}{8} \\
& \\
&
\end{aligned}=2 \ln 2=\ln 4.4 .
$$

3. (a) Express $\frac{5}{(x-1)(3 x+2)}$ in partial fractions.
(b) Hence find $\int \frac{5}{(x-1)(3 x+2)} \mathrm{d} x$, where $x>1$.
(c) Find the particular solution of the differential equation

$$
(x-1)(3 x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}=5 y, \quad x>1
$$

for which $y=8$ at $x=2$. Give your answer in the form $y=\mathrm{f}(x)$.

$$
\begin{aligned}
\text { a) } 5=A(3 x+2)+B(x-1) \Rightarrow & 3 A+B=0 \\
\Rightarrow & \frac{1}{x-1}-\frac{3}{3 x+2} \\
& \frac{2 A-B=5}{} 5 A=5 \Rightarrow A=1
\end{aligned}
$$

b) $\ln (x-1)-\ln (3 x+2)+c \Rightarrow \ln \left(\frac{x-1}{3 x+2}\right)+c$

$$
\begin{aligned}
& \text { c) } \begin{aligned}
& \int \frac{1}{y} d y=\int \frac{5}{(x-1)(3 x+2)} d x \Rightarrow \ln y=\ln \left(\frac{x-1}{3 x-1}\right)+c \\
& y=8, x=2 \Rightarrow \ln 8=\ln \left(\frac{1}{8}\right)+c \Rightarrow \ln 8=-\ln 8+c \\
& \Rightarrow c=2 \ln 8=6 \ln 2 \\
& \ln y=\ln \left(\frac{x-1}{3+2}\right)+\ln 64 \ln 64 \\
& \ln y=\ln \left(\frac{64(x-1)}{3 x+2}\right) \Rightarrow y=\frac{64(x-1)}{3 x+2}
\end{aligned}
\end{aligned}
$$

4. Relative to a fixed origin O, the point A has position vector $\mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ and the point B has position vector $-2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$. The points A and B lie on a straight line l. (a) Find $\overrightarrow{A B}$.
(b) Find a vector equation of l.

The point C has position vector $2 \mathbf{i}+p \mathbf{j}-4 \mathbf{k}$ with respect to O, where p is a constant. Given that $A C$ is perpendicular to l, find
(c) the value of p,
(d) the distance $A C$.
a) $A\left(\begin{array}{c}1 \\ 3 \\ 2\end{array}\right) \quad B\left(\begin{array}{c}-2 \\ 2 \\ -1\end{array}\right) \quad \overrightarrow{A B}=\left(\begin{array}{c}-3 \\ 5 \\ -3\end{array}\right)$
b) $l=\left(\begin{array}{c}1 \\ -3 \\ 2\end{array}\right)+t\left(\begin{array}{c}-3 \\ 5 \\ -3\end{array}\right)=\left(\begin{array}{c}1-3 t \\ -3+5 t \\ 2-3 t\end{array}\right)$

$$
\begin{aligned}
& \text { c) } \overrightarrow{A C}=\left(\begin{array}{c}
2 \\
p \\
-4
\end{array}\right)-\left(\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right)=\left(\begin{array}{c}
1 \\
p+3 \\
-6
\end{array}\right) \\
& \text { perp } \Rightarrow \overrightarrow{A C} \cdot \overrightarrow{A B}=0 \quad\left(\begin{array}{c}
-3 \\
5 \\
-3
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
p+3 \\
-6
\end{array}\right)=0 \\
& -3+s p+15+18=0 \quad \Rightarrow 5 p=-30 \Rightarrow p=-6
\end{aligned}
$$

d) $A C=\left(\begin{array}{c}1 \\ -3 \\ -6\end{array}\right) \quad|A C|=\sqrt{1^{2}+3^{2}+6^{2}}=\sqrt{46}$
5. (a) Use the binomial theorem to expand

$$
(2-3 x)^{-2}, \quad|x|<\frac{2}{3}
$$

in ascending powers of x, up to and including the term in x^{3}. Give each coefficient as a simplified fraction.

$$
\mathrm{f}(x)=\frac{a+b x}{(2-3 x)^{2}}, \quad|x|<\frac{2}{3}, \quad \text { where } a \text { and } b \text { are constants. }
$$

In the binomial expansion of $\mathrm{f}(x)$, in ascending powers of x, the coefficient of x is 0 and the coefficient of x^{2} is $\frac{9}{16}$. Find
(b) the value of a and the value of b,
(c) the coefficient of x^{3}, giving your answer as a simplified fraction.

$$
\text { a) } \begin{aligned}
& 2^{-2}\left(1-\frac{3}{2} x\right)^{-2}=\frac{1}{4}\left(1-\frac{3}{2} x\right)^{-2} \\
= & \frac{1}{4}\left(1+(-2)\left(-\frac{3}{2} x\right)+\frac{(-2)(-3)}{4}\left(-\frac{3}{2} x\right)^{2}+\frac{(-x)(-3)(-4)}{6}\left(\frac{-3}{2}\right)^{3}\right) \\
= & \frac{1}{4}\left(1+3 x+\frac{27}{4} x^{2}+\frac{108}{8} x^{3}\right)=\frac{1}{4}+\frac{3}{4} x+\frac{27}{16} x^{2}+\frac{27}{8} x^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } f(x)=(a+b x)(2-3 x)^{-2} \simeq(a+b x)\left(\frac{1}{4}+\frac{3}{4} x+\frac{27}{16} x^{2} \ldots\right) \\
& \Rightarrow \frac{3}{4} a+\frac{1}{4} b=0(\times 4) \quad 3 a+b=0 \\
& \frac{27}{16} a+\frac{3}{4} b=\frac{9}{16}(x 16) \quad 27 a+12 b=9
\end{aligned}
$$

$12 a+4 b=0$ $9 a+4 b=3-$

$$
3 a=-3 \Rightarrow a=-1 \quad b=3
$$

c) $\frac{27}{16} b+\frac{27}{8} a=\frac{81}{16}-\frac{27}{8}=\frac{27}{16}$
6. The curve C has parametric equations

$$
x=\ln t, \quad y=t^{2}-2, \quad t>0
$$

Find
(a) an equation of the normal to C at the point where $t=3$,
(b) a cartesian equation of C.

Figure 1

The finite area R, shown in Figure 1, is bounded by C, the x-axis, the line $x=\ln 2$ and the line $x=\ln 4$. The area R is rotated through 360° about the x-axis.
(c) Use calculus to find the exact volume of the solid generated.

$$
\begin{aligned}
& \text { a) } \frac{d x}{d t}=\frac{1}{t} \quad \frac{d y}{d t}=2 t \quad \frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t}=2 t \div \frac{1}{t} \\
& =2 t^{2} \\
& t=3, x=\ln 3 ; y=7 ; m_{t}=18 \Rightarrow m_{n}=-\frac{1}{18} \\
& y-7=\frac{-1}{18}(x-\ln 3) \\
& \text { b) Volume }=\pi \int y^{2} d x=\pi \int y^{2} \frac{d x}{d t} d t \\
& \begin{array}{l}
x=\ln 4 \quad t=4 \\
x=\ln 2 \quad t=2
\end{array} \text { volume }=\pi \int_{2}^{4}\left(t^{2}-2\right)^{2} \times \frac{1}{t} d t \\
& =\pi \int_{2}^{4} t^{3}-4 t+4 t^{-1} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\pi\left[\frac{1}{4} t^{4}-2 t^{2}+4 \ln t\right]_{2}^{4} \\
& =\pi[(64-32+4 \ln 4)-(4-8+4 \ln 2)] \\
& =\pi(36+4 \ln 2)=4 \pi(9+\ln 2)
\end{aligned}
$$

7.

$$
I=\int_{2}^{5} \frac{1}{4+\sqrt{ }(x-1)} \mathrm{d} x
$$

(a) Given that $y=\frac{1}{4+\sqrt{(x-1)}}$, complete the table below with values of y corresponding to $x=3$ and $x=5$. Give your values to 4 decimal places.

x	2	3	4	5
y	0.2	$\mathbf{0} 1847$	0.1745	$\mathbf{0 . 1 6 6 7}$

(b) Use the trapezium rule, with all of the values of y in the completed table, to obtain an estimate of I, giving your answer to 3 decimal places.
(c) Using the substitution $x=(u-4)^{2}+1$, or otherwise, and integrating, find the exact value of I.
b) Area $1 \frac{1}{2}(1)[0.2+2(0.1847+0.1745)+0.1667]$

$\simeq 0.543$ (3dp)	
c) $x=(u-4)^{2}+1=u^{2}-8 u+17$	
$\frac{d x}{d u}=2 u-8 \Rightarrow d x=(2 u-8) d u$	
$x-1=(u-4)^{2} \Rightarrow \sqrt{x-1}=u-4$	
$\Rightarrow 4+\sqrt{x-1}=u$	
$x=5 \quad 5=(u-4)^{2}+1 \quad u-4=2 \Rightarrow u=6$ $x=2 \quad 2=(u-4)^{2}+1 \quad u-4=1 \quad \Rightarrow u=5$	
$\begin{aligned} & =\int_{5}^{6} \frac{2 u-8}{u} d u=\int_{5}^{6} 2-8 u d u=[2 u-8 \ln u]_{5}^{6} \\ & =(12-8 \ln 6)-(10-8 \ln 5)=2+8 \ln \frac{5}{5} \end{aligned}$	

