

Mark Scheme (Results) January 2011

GCE

GCE Core Mathematics C2 (6664) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011
Publications Code US026235
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Core Mathematics C2 6664 Mark Scheme

Question Number	Scheme	Marks
1.		
(a)	$f(x) = x^4 + x^3 + 2x^2 + ax + b$	
	Attempting $f(1)$ or $f(-1)$.	M1
	f(1) = 1 + 1 + 2 + a + b = 7 or 4 + a + b = 7 \Rightarrow a + b = 3 (as required) AG	A1 * cso
		(2)
(b)	Attempting $f(-2)$ or $f(2)$.	M1
	$f(-2) = \underline{16 - 8 + 8 - 2a + b = -8} \{ \Rightarrow -2a + b = -24 \}$	A1
	Solving both equations simultaneously to get as far as $a =$ or $b =$	dM1
	Any one of $a = 9$ or $b = -6$	A1
	Both $a = 9$ and $b = -6$	A1 cso
		(5) [7]
	<u>Notes</u>	L'J
(-)		
(a)		airea tha
	A1 for applying $f(1)$, setting the result equal to 7, and manipulating this correctly to result given on the paper as $a + b = 3$. Note that the answer is given in part (a).	give the
	result given on the paper as $u + b = 3$. Note that the answer is given in part (a).	
(b)	M1: attempting either $f(-2)$ or $f(2)$.	
	A1: <u>correct underlined equation</u> in a and b; eg $16 - 8 + 8 - 2a + b = -8$ or equivale	ent,
	eg -2a + b = -24.	
	dM1: an attempt to eliminate one variable from 2 linear simultaneous equations in	a and b .
	Note that this mark is dependent upon the award of the first method mark.	
	A1: any one of $a = 9$ or $b = -6$.	
	A1: both $a = 9$ and $b = -6$ and a correct solution only.	
	Alternative Method of Long Division:	
	(a) M1 for long division by $(x-1)$ to give a remainder in a and b which is independ	lent of <i>x</i> .
	A1 for {Remainder = } $b + a + 4 = 7$ leading to the correct result of $a + b = 3$ (answer	er given.)
	(b) M1 for long division by $(x + 2)$ to give a remainder in a and b which is independent	dent of x .
	A1 for {Remainder = } $b - 2(a - 8) = -8$ { $\Rightarrow -2a + b = -24$ }.	
	Then dM1A1A1 are applied in the same way as before.	

1

Question	Scheme	Marks	
Number 2.			
	$11^2 = 8^2 + 7^2 - (2 \times 8 \times 7 \cos C)$	M1	
	$\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7} \text{ (or equivalent)}$ $\{\hat{C} = 1.64228\} \implies \hat{C} = \text{awrt } 1.64$	A1	
	$\left\{\hat{C} = 1.64228\right\} \Rightarrow \hat{C} = \text{awrt } 1.64$	A1 cso	
		(3)	
(b)	Use of Area $\triangle ABC = \frac{1}{2}ab\sin(\text{their }C)$, where a, b are any of 7, 8 or 11.	M1	
	$= \frac{1}{2} (7 \times 8) \sin C \text{using the value of their } C \text{ from part (a)}.$	A1 ft	
	$\{=27.92848 \text{ or } 27.93297\} = \text{awrt } 27.9 \text{ (from angle of either } 1.64^{\circ} \text{ or } 94.1^{\circ})$	A1 cso	
		(3) [6]	
	Notes Notes	լՄյ	
(a)	M1 is also scored for $8^2 = 7^2 + 11^2 - (2 \times 7 \times 11\cos C)$ or $7^2 = 8^2 + 11^2 - (2 \times 8 \times 11\cos C)$	$\overline{\operatorname{os} C}$	
	or $\cos C = \frac{7^2 + 11^2 - 8^2}{2 \times 7 \times 11}$ or $\cos C = \frac{8^2 + 11^2 - 7^2}{2 \times 8 \times 11}$,	
	1 st A1: Rearranged correctly to make $\cos C = \dots$ and numerically correct (possibly		
	unsimplified). Award A1 for any of $\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7}$ or $\cos C = \frac{-8}{112}$ or $\cos C$	$=-\frac{1}{14}$ or	
	$\cos C = \operatorname{awrt} - 0.071.$		
	SC: Also allow 1^{st} A1 for $112\cos C = -8$ or equivalent.		
	Also note that the 1 st A1 can be implied for \hat{C} = awrt 1.64 or \hat{C} = awrt 94.1°.		
	Special Case: $\cos C = \frac{1}{14}$ or $\cos C = \frac{11^2 - 8^2 - 7^2}{2 \times 8 \times 7}$ scores a SC: M1A0A0.		
	2 nd A1: for awrt 1.64 cao		
	Note that $A = 0.6876^{\circ}$ (or 39.401°), $B = 0.8116^{\circ}$ (or 46.503°)		
(b)	M1: alternative methods must be fully correct to score the M1. For any (or both) of the M1 or the 1 st A1; their <i>C</i> can either be in degrees or radians.		
	Candidates who use $\cos C = \frac{1}{14}$ to give $C = 1.499$, can achieve the correct answer of	of awrt	
	27.9 in part (b). These candidates will score M1A1A0cso, in part (b).	1140	
	Finding $C = 1.499$ in part (a) and achieving awrt 27.9 with no working scores M1A.	MAU.	
	Otherwise with no working in part (b), awrt 27.9 scores M1A1A1. Special Case: If the candidate gives awrt 27.9 from any of the below then award M1A1A1.	d	
	$\frac{1}{2}(7 \times 11)\sin(0.8116^{\circ} \text{ or } 46.503^{\circ}) = \text{awrt } 27.9 , \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{aw}$	rt 27.9.	
	Alternative: Hero's Formula: $A = \sqrt{13(13-11)(13-8)(13-7)} = \text{awrt } 27.9$, where M		
	attempt to apply $A = \sqrt{s(s-11)(s-8)(s-7)}$ and the first A1 is for the correct application.		
	the formula.		

Question	Cahama	Morko
Number	Scheme	Marks
3. (a)	$ar = 750$ and $ar^4 = -6$ (could be implied from later working in either (a) or (b)).	B1
	$r^3 = \frac{-6}{750}$	M1
	Correct answer from no working, except	
	Correct answer from no working, except for special case below gains all three marks.	A1
	marks.	(3)
(b)	a(-0.2) = 750	M1
	$a\left\{ = \frac{750}{-0.2} \right\} = -3750$	A1 ft
		(2)
(c)	Applies $\frac{a}{1-r}$ correctly using both their a and their $ r < 1$. Eg. $\frac{-3750}{10.2}$ So, $S_{\infty} = -3125$	M1
	So, $S_{\infty} = -3125$	A1
		(2)
	Notes	[7]
	B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either	(a) or
(a)	(b)).	(u) 01
	M1: for eliminating a by either dividing $ar^4 = -6$ by $ar = 750$ or dividing	
	$ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is	M0.
	Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \left\{ = -125 \right\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \left\{ = -125 \right\}$	125} are
	fine for the award of M1.	
	SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{ = -125 \}$	
	or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{ = -125 \}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award	l of M1.
	SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1.	
(b)	M1 for inserting their r into either of their original correct equations of either $ar = 7$.	50 or
	$\{a=\}$ $\frac{750}{r}$ or $ar^4=-6$ or $\{a=\}$ $\frac{-6}{r^4}$ – in both a and r . No slips allowed here for M1	
	A1 for either $a = -3750$ or a equal to the correct follow through result expressed either	
	an exact integer, or a fraction in the form $\frac{c}{d}$ where both c and d are integers, or corre	ect to
	awrt 1 dp.	
(c)	M1 for applying $\frac{a}{1-r}$ correctly (only a slip in substituting r is allowed) using both the	neir a
	and their $ r < 1$. Eg. $\frac{-3750}{1 - 0.2}$. A1 for -3125	
	In parts (a) or (b) or (c), the correct answer with no working scores full marks.	

Question Number	Scheme	Marks	
4. (a)	Seeing –1 and 5. (See note below.)	B1 (1)	
(b)	$(x+1)(x-5) = \underline{x^2 - 4x - 5} \text{ or } \underline{x^2 - 5x + x - 5}$ $\int (x^2 - 4x - 5) dx = \frac{x^3}{3} - \frac{4x^2}{2} - 5x \left\{ + c \right\}$ $\begin{bmatrix} \frac{x^3}{3} - \frac{4x^2}{2} - 5x \end{bmatrix}_{-1}^{5} = (\dots) - (\dots)$ $\begin{bmatrix} \left(\frac{125}{3} - \frac{100}{2} - 25\right) - \left(-\frac{1}{3} - 2 + 5\right) \end{bmatrix}$ M: $x^n \to x^{n+1}$ for any one term 1st A1 at least two out of three term correctly from part(a)) into an "integrate function" and subtracts, either way round.	B1 . M1A1ft A1 	
(a)	$\left\{ \begin{array}{l} \left(\frac{125}{3} - \frac{100}{2} - 25\right) - \left(-\frac{1}{3} - 2 + 5\right) \\ = \left(-\frac{100}{3}\right) - \left(\frac{8}{3}\right) = -36 \end{array} \right\}$ Hence, Area = 36 Final answer must be 36, not -36 $\frac{\text{Notes}}{\text{B1: for -1 and 5. Note that (-1, 0) and (5, 0) are acceptable for B1. Also allow}}$	A1 (6) [7]	
	(0, -1) and $(0, 5)$ generously for B1. Note that if a candidate writes down that $A: (5,0)$, $B: (-1,0)$, (ie A and B interchanged,) then B0. Also allow values inserted in the correct position on the x -axis of the graph.		
(b)			

Question Number	Scheme	Marks	
5.			
	$\begin{pmatrix} 40 \\ 4 \end{pmatrix} = \frac{40!}{4!b!}$; $(1+x)^n$ coefficients of x^4 and x^5 are p and q respectively.		
	b = 36	B1	
	Candidates should usually "identify" two terms as their p and q respectively.	(1)	
(b)	Any one o		
	Term 1 o		
	Term 2	2	
	Term 1: $\binom{40}{4}$ or $\binom{40}{4}$ or $\frac{40!}{4!36!}$ or $\frac{40(39)(38)(37)}{4!}$ or 91390 correct	. M1	
	$\begin{pmatrix} 4 \end{pmatrix}$ 4!36! 4! (Ignore the	2	
	label of p		
	Term and/or q .		
	2: $\binom{40}{5}$ or $\binom{40}{5}$ or $\frac{40!}{5!35!}$ or $\frac{40(39)(38)(37)(36)}{5!}$ or 658008 Both of then correct		
	(Ignore the		
	and/or q .		
	Hence, $\frac{q}{p} = \frac{658008}{91390} \left\{ = \frac{36}{5} = 7.2 \right\}$ for $\frac{658008}{91390}$ or	A1 oe cso	
		(3)	
	Notes Notes	[4]	
(a)	B1: for only $b = 36$.		
(b)	The candidate may expand out their binomial series. At this stage no marks should	be awarded	
	until they start to identify either one or both of the terms that they want to focus on	. Once they	
	identify their terms then if one out of two of them (ignoring which one is p and wh	A '	
	is correct then award M1. If both of the terms are identified correctly (ignoring wh	ich one is p	
	and which one is q) then award the first A1.		
	Term 1 = $\binom{40}{4} x^4$ or ${}^{40}C_4(x^4)$ or $\frac{40!}{4!36!} x^4$ or $\frac{40(39)(38)(37)}{4!} x^4$ or $91390 x^4$,		
	Term 2 = $\binom{40}{5} x^5$ or ${}^{40}C_5(x^5)$ or $\frac{40!}{5!35!} x^5$ or $\frac{40(39)(38)(37)(36)}{5!} x^5$ or $658008x^5$		
	are fine for any (or both) of the first two marks in part (b).		
	2^{nd} A1 for stating $\frac{q}{p}$ as $\frac{658008}{91390}$ or equivalent. Note that $\frac{q}{p}$ must be independent	of x.	
	Also note that $\frac{36}{5}$ or 7.2 or any equivalent fraction is fine for the 2 nd A1 mark.		
	SC: If candidate states $\frac{p}{q} = \frac{5}{36}$, then award M1A1A0.		
	SC: If candidate states $\frac{p}{q} = \frac{5}{36}$, then award M1A1A0.		
	SC: If candidate states $\frac{p}{q} = \frac{5}{36}$, then award M1A1A0. Note that either $\frac{4!36!}{5!35!}$ or $\frac{5!35!}{4!36!}$ would be awarded M1A1.		

Question Number	Scheme		Marks
6. (a)	x 2 2.25 2.5 2.75 y 0.5 0.38 0.298507 0.241691		5.1
	At $\{x = 2.5,\}\ y = 0.30$ (only)	At least one <i>y</i> -ordinate correct.	B1
	At $\{x = 2.75,\}\ y = 0.24 \text{ (only)}$	Both <i>y</i> -ordinates correct.	B1
			(2)
		Outside brackets $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$	B1 aef
		<u>For structure of </u> {};	M1
(b)	$\frac{1}{2} \times 0.25 ; \times \left\{ 0.5 + 0.2 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) \right\}$	Correct expression inside brackets which all must be multiplied by their "outside constant".	<u>A1</u> √
	$\left\{ = \frac{1}{8}(2.54) \right\} = \text{awrt } 0.32$	awrt 0.32	A1
			(4)
(c)	Area of triangle = $\frac{1}{2} \times 1 \times 0.2 = 0.1$		B1
	Area(S) = "0.3175" - 0.1		M1
	= 0.2175		A1 ft
			(3)
			[9]

Question Number	Scheme	Marks	
	<u>Notes</u>	l	
(b)	B1 for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent.		
	M1 requires the correct {} bracket structure. This is for the first bracket to contain first	y-	
	ordinate plus last <i>y</i> -ordinate and the second bracket to be the summation of the remaining ordinates in the table.		
	No errors (eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y-ordinate allowed in the second bracket and the second bracket must be multiplied by 2. Only one error is allowed here in the 2(0.38+ their 0.30+ their 0.24) bracket.		
	A1ft for the correct bracket {} following through candidate's y-ordinates found in part	(a).	
	A1 for answer of awrt 0.32.		
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly	e	
	then award M1A0A0 for either $\frac{1}{2} \times 0.25 \times 0.5 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) + 0.2$		
	(nb: yielding final answer of 2.1025) so that the 0.5 is only multiplied by $\frac{1}{2} \times 0.25$		
	or $\frac{1}{2} \times 0.25 \times (0.5 + 0.2) + 2(0.38 + \text{their } 0.30 + \text{their } 0.24)$		
	(nb: yielding final answer of 1.9275) so that the $(0.5 + 0.2)$ is multiplied by $\frac{1}{2} \times 0.25$.		
	Need to see trapezium rule – answer only (with no working) gains no marks. Alternative: Separate trapezia may be used, and this can be marked equivalently. (See appendix.)		
(c)	B1 for the area of the triangle identified as either $\frac{1}{2} \times 1 \times 0.2$ or 0.1. May be identified on	the	
	diagram. M1 for "part (b) answer" – "0.1 only" or "part (b) answer – their attempt at 0.1 only". (Strattempt!) A1ft for correctly following through "part (b) answer" – 0.1. This is also dependent on the answer to (b) being greater than 0.1. Note: candidates may round answers here, so allow A they round their answer correct to 2 dp.	ie	

Question	Scheme	Marks	
Number			
7. (a)	$3\sin^{2} x + 7\sin x = \cos^{2} x - 4; 0 \le x < 360^{\circ}$ $3\sin^{2} x + 7\sin x = (1 - \sin^{2} x) - 4$ $4\sin^{2} x + 7\sin x + 3 = 0 \mathbf{AG}$	M1 A1 * cso	
		(2)	
(b)	$(4\sin x + 3)(\sin x + 1)$ {= 0} Valid attempt at factorisation and $\sin x =$	M1	
	$\sin x = -\frac{3}{4}$, $\sin x = -1$ Both $\sin x = -\frac{3}{4}$ and $\sin x = -1$.	A1	
	$(\alpha = 48.59)$		
	$x = 180 + 48.59$ or $x = 360 - 48.59$ Either $(180 + \alpha)$ or $(360 - \alpha)$	dM1	
	x = 228.59, $x = 311.41$ Both awrt 228.6 and awrt 311.4	A1	
	$\{\sin x = -1\} \implies x = 270 \tag{270}$	B1	
		(5)	
	Notes	[7]	
(a)	M1 for a correct method to change $\cos^2 x$ into $\sin^2 x$ (must use $\cos^2 x = 1 - \sin^2 x$).		
,	Note that applying $\cos^2 x = \sin^2 x - 1$, scores M0.		
	Note that applying $\cos^2 x = \sin^2 x - 1$, scores MU. A1 for obtaining the printed answer without error (except for implied use of zero.), although		
	the equation at the end of the proof must be = 0 . Solution just written only as above score M1A1.	_	
(b)	1^{st} M1 for a valid attempt at factorisation, can use any variable here, s , y , x or $\sin x$, and an attempt to find at least one of the solutions. Alternatively, using a correct formula for solving the quadratic. Either the formula must be stated correctly or the correct form must be implied by the substitution. 1^{st} A1 for the two correct values of $\sin x$. If they have used a substitution, a correct value of their s or their y or their x . 2^{nd} M1 for solving $\sin x = -k$, $0 < k < 1$ and realising a solution is either of the form $(180 + \alpha)$ or $(360 - \alpha)$ where $\alpha = \sin^{-1}(k)$. Note that you cannot access this mark from $\sin x = -1 \Rightarrow x = 270$. Note that this mark is dependent upon the 1^{st} M1 mark awarded. 2^{nd} A1 for both awrt 228.6 and awrt 311.4 B1 for 270. If there are any EXTRA solutions inside the range $0 \le x < 360^{\circ}$ and the candidate would		
	otherwise score FULL MARKS then withhold the final bA2 mark (the fourth mark is of the question). Also ignore EXTRA solutions outside the range $0 \le x < 360^{\circ}$.	n uns part	
	Working in Radians: Note the answers in radians are $x = 3.9896, 5.4351, 4.7123$	3	
	If a candidate works in radians then mark part (b) as above awarding the 2^{nd} A1 for b 4.0 and awrt 5.4 and the B1 for awrt 4.7 or $\frac{3\pi}{2}$. If the candidate would then score FU	oth awrt	
	MARKS then withhold the final bA2 mark (the fourth mark in this part of the question No working: Award B1 for 270 seen without any working. Award M0A0M1A1 for awrt 228.6 and awrt 311.4 seen without any working. Award M0A0M1A0 for any one of awrt 228.6 or awrt 311.4 seen without any working.	on.)	

Question Number	Scheme	Mai	rks
8. (a)	Graph of $y = 7^x$, $x \in \mathbb{R}$ and solving $7^{2x} - 4(7^x) + 3 = 0$		
	At least two of the three criteria correct. (See notes below.)	B1	
	All three criteria correct. (See notes below.)	B1	
	(0,1)		
	O \tilde{x}		(2)
(b)	Forming a quadratic {using $y^2 - 4y + 3 = 0$ } $y'' = 7^x$ }.	M1	• •
	$y^2 - 4y + 3 = 0$	A1	
	$\{(y-3)(y-1) = 0 \text{ or } (7^x-3)(7^x-1) = 0\}$		
	$y = 3$, $y = 1$ or $7^x = 3$, $7^x = 1$ Both $y = 3$ and $y = 1$.	A1	
	${7^x = 3 \Rightarrow} x \log 7 = \log 3$ $\text{or } x = \frac{\log 3}{\log 7} \text{ or } x = \log_7 3$ A valid method for solving $7^x = k \text{ where } k > 0, k \neq 1$	dM1	
	x = 0.5645 0.565 or awrt 0.56	A1	
	x = 0 $x = 0$ stated as a solution.	B1	
			(6) [8]
	<u>Notes</u>	1	
(a)	B1B0: Any two of the following three criteria below correct.		
	B1B1: All three criteria correct. Criteria number 1: Correct shape of curve for $x \ge 0$.		
	Criteria number 2: Correct shape of curve for $x \ge 0$.		
	Criteria number 2: Correct shape of curve for $x < 0$. Criteria number 3: $(0, 1)$ stated or 1 marked on the y-axis. Allow $(1, 0)$ rather than $(0, 1)$		
	marked in the "correct" place on the y-axis.		

Question Number	Scheme	Marks	
(b)	1^{st} M1 is an attempt to form a quadratic equation {using "y" = 7^x .}		
	1^{st} A1 mark is for the correct quadratic equation of $y^2 - 4y + 3 = 0$.		
	Can use any variable here, eg: y , x or 7^x . Allow M1A1 for $x^2 - 4x + 3 = 0$.		
	Writing $(7^x)^2 - 4(7^x) + 3 = 0$ is also sufficient for M1A1.		
	Award M0A0 for seeing $7^{x^2} - 4(7^x) + 3 = 0$ by itself without seeing $y^2 - 4y + 3 = 0$	or	
	$\left(7^{x}\right)^{2}-4\left(7^{x}\right)+3=0.$		
	1^{st} A1 mark for both $y = 3$ and $y = 1$ or both $7^x = 3$ and $7^x = 1$. Do not give this accuracy	ıracy	
	mark for both $x = 3$ and $x = 1$, unless these are recovered in later working by candidate	2	
	applying logarithms on these.		
	Award M1A1A1 for $7^x = 3$ and $7^x = 1$ written down with no earlier working.		
	3 rd dM1 for solving $7^x = k$, $k > 0$, $k \ne 1$ to give either $x \ln 7 = \ln k$ or $x = \frac{\ln k}{\ln 7}$ or $x = \log k$	$_{7} k$.	
	dM1 is dependent upon the award of M1.		
	2^{nd} A1 for 0.565 or awrt 0.56. B1 is for the solution of $x = 0$, from any working.		

Question	Scheme	Marks
Number	Sofieme	
9. (a)	$C\left(\frac{-2+8}{2}, \frac{11+1}{2}\right) = C(3, 6)$ AG Correct method (no errors) for finding the mid-point of <i>AB</i> giving $(3, 6)$	B1*
(b)	$(8-3)^2 + (1-6)^2$ or $\sqrt{(8-3)^2 + (1-6)^2}$ or order to find the radius. $(-2-3)^2 + (11-6)^2$ or $\sqrt{(-2-3)^2 + (11-6)^2}$ Applies distance formula in order to find the radius. Correct application of formula	(1) M1
	iorniuia.	A1
	$(x \pm 3)^{2} + (y \pm 6)^{2} = 50 \left(\text{or} \left(\sqrt{50} \right)^{2} \text{ or } \left(5\sqrt{2} \right)^{2} \right)$ $(x \pm 3)^{2} + (y \pm 6)^{2} = k,$ $k \text{ is a positive } \underline{\text{value.}}$ $(x - 3)^{2} + (y - 6)^{2} = 50 \text{ (Not } 7.07^{2} \text{)}$	M1 A1
		(4)
(c)	{For $(10, 7)$, } $(10-3)^2 + (7-6)^2 = 50$, {so the point lies on C.}	<u>B1</u>
	7 (1	(1)
(d)	{Gradient of radius} = $\frac{7-6}{10-3}$ or $\frac{1}{7}$ This must be seen in part (d).	B1
	Gradient of tangent $=\frac{-7}{1}$ Using a perpendicular gradient method.	M1
	y - 7 = -7(x - 10) $y - 7 = (their gradient)(x - 10)$	M1
	y = -7x + 77 $y = -7x + 77$ or $y = 77 - 7x$	A1 cao
		(4) [10]
	<u>Notes</u>	
(a)	Alternative method: $C\left(-2 + \frac{8 - 2}{2}, 11 + \frac{1 - 11}{2}\right)$ or $C\left(8 + \frac{-2 - 8}{2}, 1 + \frac{11 - 1}{2}\right)$	
(b)	You need to be convinced that the candidate is attempting to work out the radius and not the diameter of the circle to award the first M1. Therefore allow 1 st M1 generously for $\frac{\left(-2-8\right)^2+\left(11-1\right)^2}{2}$ Award 1 st M1A1 for $\frac{\left(-2-8\right)^2+\left(11-1\right)^2}{4}$ or $\frac{\sqrt{\left(-2-8\right)^2+\left(11-1\right)^2}}{2}$. Correct answer in (b) with no working scores full marks.	
(c)	B1 awarded for correct verification of $(10-3)^2 + (7-6)^2 = 50$ with no errors.	
	Also to gain this mark candidates need to have the correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c).	ect C.

Question Number	Scheme	Marks
(d)	2^{nd} M1 mark also for the complete method of applying $7 = (\text{their gradient})(10) + c$, find	ding c .
	Note : Award 2^{nd} M0 in (d) if their numerical gradient is either 0 or ∞ .	
	Alternative: For first two marks (differentiation):	
	$2(x-3) + 2(y-6)\frac{dy}{dx} = 0$ (or equivalent) scores B1.	
	1 st M1 for substituting both $x = 10$ and $y = 7$ to find a value for $\frac{dy}{dx}$, which must con-	ntain both
	x and y. (This M mark can be awarded generously, even if the attempted "differentia not "implicit".)	tion" is
	<u>Alternative:</u> $(10-3)(x-3) + (7-6)(y-6) = 50$ scores B1M1M1 which leads to	
	y = -7x + 77.	

Question	Scheme	Marks			
Number 10.					
	$V = 4x(5-x)^2 = 4x(25-10x+x^2)$				
	So, $V = 100x - 40x^2 + 4x^3$ $\pm \alpha x \pm \beta x^2 \pm \gamma x^3$, where $\alpha, \beta, \gamma \neq 0$ $V = 100x - 40x^2 + 4x^3$	M1 A1			
	$\frac{dV}{dx} = 100 - 80x + 12x^2$ At least two of their expanded terms differentiated correctly. $100 - 80x + 12x^2$	M1 A1 cao			
(b)	$100 - 80x + 12x^2 = 0$ Sets their $\frac{dV}{dx}$ from part (a) = 0	(4) M1			
	$\left\{ \Rightarrow 4\left(3x^2 - 20x + 25\right) = 0 \Rightarrow 4(3x - 5)(x - 5) = 0 \right\}$				
	{As $0 < x < 5$ } $x = \frac{5}{3}$ or $x = \text{awrt } 1.67$	A1			
	$x = \frac{5}{3}$, $V = 4(\frac{5}{3})(5 - \frac{5}{3})^2$ Substitute candidate's value of x where $0 < x < 5$ into a formula for V .	dM1			
	So, $V = \frac{2000}{27} = 74\frac{2}{27} = 74.074$ Either $\frac{2000}{27}$ or $74\frac{2}{27}$ or awrt 74.1	A1			
(c)	$\frac{d^2V}{dx^2} = -80 + 24x$ Differentiates their $\frac{dV}{dx}$ correctly to give $\frac{d^2V}{dx^2}$.	M1			
	When $x = \frac{5}{3}$, $\frac{d^2V}{dx^2} = -80 + 24\left(\frac{5}{3}\right)$				
	$\frac{d^2V}{dx^2} = -40 < 0 \Rightarrow V$ is a maximum $\frac{d^2V}{dx^2} = -40$ and $\frac{d^2V}{dx^2} = -40$	A1 cso			
		(2) [10]			
	<u>Notes</u>				
(a)	1 st M1 for a three term cubic in the form $\pm \alpha x \pm \beta x^2 \pm \gamma x^3$.				
	Note that an un-combined $\pm \alpha x \pm \lambda x^2 \pm \mu x^2 \pm \gamma x^3$, α , λ , μ , $\gamma \neq 0$ is fine for the 1 st M1.				
	1^{st} A1 for either $100x - 40x^2 + 4x^3$ or $100x - 20x^2 - 20x^2 + 4x^3$.				
	2 nd M1 for any two of their expanded terms differentiated correctly. NB: If expanded expression is divided by a constant, then the 2 nd M1 can be awarded for at least two terms are				
	correct. Note for un-combined $\pm \lambda x^2 \pm \mu x^2$, $\pm 2\lambda x \pm 2\mu x$ counts as one term differentiated correctly.				
	2^{nd} A1 for $100 - 80x + 12x^2$, cao .				
	Note: See appendix for those candidates who apply the product rule of differentiation.				

Question Number	Scheme				
(b)	Note you can mark parts (b) and (c) together.				
	Ignore the extra solution of $x = 5$ (and $V = 0$). Any extra solutions for V inside found for				
	values inside the range of x , then award the final A0.				
(c)	M1 is for their $\frac{dV}{dx}$ differentiated correctly (follow through) to give $\frac{d^2V}{dx^2}$.				
	A1 for all three of $\frac{d^2V}{dx^2} = -40$ and $\frac{\sqrt{9}}{\sqrt{9}} = -40$				
	Ignore any second derivative testing on $x = 5$ for the final accuracy mark.				
	Alternative Method: Gradient Test: M1 for finding the gradient either side of their x-value				
	from part (b) where $0 < x < 5$. A1 for both gradients calculated correctly to the near integer,				
	<u>using > 0 and < 0 respectively or a correct sketch and maximum.</u> (See appendix for gradient				
	values.)				

Question Number	Scheme		
Aliter 4 (b) Way 2	$(x+1)(x-5) = \frac{x^2 - 4x - 5}{3} \text{ or } \frac{x^2 - 5x + x - 5}{2}$ $-\int (x^2 - 4x - 5) dx = -\frac{x^3}{3} + \frac{4x^2}{2} + 5x \left\{ + c \right\}$ $\left[-\frac{x^3}{3} + \frac{4x^2}{2} + 5x \right]_{-1}^{5} = (\dots) - (\dots)$ $\left\{ \left(-\frac{125}{3} + \frac{100}{2} + 25 \right) - \left(\frac{1}{3} + 2 - 5 \right) \right\}$ $= \left(\frac{100}{3} \right) - \left(-\frac{8}{3} \right)$ Hence, Area = 36	Can be implied by later working. M: $x^n \to x^{n+1}$ for any one term. 1st A1 any two out of three terms correctly ft. Substitutes 5 and -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round.	B1 M1A1ft A1 dM1 A1 (6)

Question Number	Scheme		
Aliter 6 (b) Way 2	$0.25 \times \left\{ \frac{0.5 + 0.38}{2} + \frac{0.38 + 0.30}{2} + \frac{0.30 + 0.24}{2} + \frac{0.24 + 0.2}{2} \right\}$ $0.25 \text{ and a divisor of 2 on all terms inside brackets.}$ One of first and last ordinates, two of the middle ordinates inside brackets ignoring the denominator of 2. Correct expression inside brackets if $\frac{1}{2}$ was to be factorised out. $\left\{ = \frac{1}{8}(2.54) \right\} = \text{awrt } 0.32$	B1 M1 <u>A1</u> √ A1 (4)	

Question Number	Scheme	Marks	.S
Aliter	Product Rule Method:		
10 (a)			
Way2	$\begin{cases} u = 4x & v = (5 - x)^2 \\ \frac{du}{dx} = 4 & \frac{dv}{dx} = 2(5 - x)^1(-1) \end{cases}$		
	$\pm (\text{their } u')(5-x)^2 \pm (4x)(\text{their } v')$	M1	
	$\frac{dy}{dx} = 4(5-x)^2 + 4x(2)(5-x)^1(-1)$ A correct attempt at differentiating any one of either <i>u</i> or <i>v</i> correctly.	1 (111//11	
	Both $\frac{du}{dx}$ and $\frac{dv}{dx}$ correct	A1	
	$\frac{dy}{dx} = 4(5-x)^2 - 8x(5-x)$ $4(5-x)^2 - 8x(5-x)$	A1	
		((4)
Aliter 10 (a) Way3	$\begin{cases} u = 4x & v = 25 - 10x + x^2 \\ \frac{du}{dx} = 4 & \frac{dv}{dx} = -10 + 2x \end{cases}$		
	$\pm (\text{their } u') \Big(\text{their} (5-x)^2 \Big) \pm (4x) (\text{their } v')$	M1	
	$\frac{dy}{dx} = 4(25 - 10x + x^2) + 4x(-10 + 2x)$ A correct attempt at differentiating any one of either <i>u</i> or their <i>v</i> correctly.	dM1	
	Both $\frac{du}{dx}$ and $\frac{dv}{dx}$ correct	A1	
	$\frac{dV}{dx} = 100 - 80x + 12x^2$ $100 - 80x + 12x^2$	A1	
		((4)
	Note: The candidate needs to use a complete product rule method in order for you to award the first M1 mark here. The second method mark is dependent on the first method mark awarded.		

Question Number	Scheme	Marks			
Aliter	Gradient Test Method:				
10 (c)	$\frac{dV}{dx} = 100 - 80x + 12x^2$				
Way 2	Helpful table!				
	$\begin{array}{c cccc} x & \frac{\mathrm{d}V}{\mathrm{d}x} \\ \hline 0.8 & 43.68 \\ \hline 0.9 & 37.72 \\ \hline 1 & 32 \\ \hline 1.1 & 26.52 \\ \hline 1.2 & 21.28 \\ \hline 1.3 & 16.28 \\ \hline 1.4 & 11.52 \\ \hline 1.429 & 10.204 \\ \hline 1.5 & 7 \\ \hline 1.6 & 2.72 \\ \hline 1.7 & -1.32 \\ \hline 1.8 & -5.12 \\ \hline 1.9 & -8.68 \\ \hline 2 & -12 \\ \hline 2.1 & -15.08 \\ \hline 2.2 & -17.92 \\ \hline 2.3 & -20.52 \\ \hline 2.4 & -22.88 \\ \hline 2.5 & -25 \\ \hline \end{array}$				

S	Question Number			Scheme	Marks
Helpful table:		Method of trial and improvement			
0 0 0 0.1 -0.38348 0.2 -0.72519 0.3 -0.95706 0.4 -0.96835 0.5 -0.58301 0.51 -0.51316 0.52 -0.43638 0.53 -0.3523 0.54 -0.26055 0.55 -0.16074 0.561 -0.04116 0.562 -0.05247 0.563 -0.01828 0.564 -0.0067 0.563 -0.01828 0.57 0.064688 0.58 0.19118 0.59 0.327466 0.6 0.474029 0.7 2.62723 0.8 6.525565 0.9 13.15414 1 24 For a full method of trial and improvement by trialing f(value between 0.1 and 0.5645) = value and f(value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f(value between 0.5645 and 0.5645) = value and f(value between 0.5645 and 1) = value Both values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f(value between 0.5645 and 0.5645) = value Both values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f(value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) $x = 0$ Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give		_	_		
$\begin{array}{ c c c c }\hline 0.1 & -0.38348 \\ 0.2 & -0.72519 \\ 0.3 & -0.95706 \\ 0.4 & -0.96835 \\ 0.5 & -0.58301 \\ 0.51 & -0.51316 \\ 0.52 & -0.43638 \\ 0.53 & -0.3523 \\ 0.54 & -0.26055 \\ 0.55 & -0.16074 \\ 0.56 & -0.05247 \\ 0.561 & -0.04116 \\ 0.562 & -0.02976 \\ 0.563 & -0.01828 \\ 0.564 & -0.0067 \\ 0.57 & 0.064688 \\ 0.58 & 0.19118 \\ 0.59 & 0.327466 \\ 0.6 & 0.474029 \\ 0.7 & 2.62723 \\ 0.8 & 6.525565 \\ 0.9 & 13.15414 \\ \hline 1 & 24 \\ \hline For a full method of trial and improvement by trialing f (value between 0.1 and 0.5645) = value and f (value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f (value between 0.5645 and 0.5645) = value and f (value between 0.5645 and 0.5655$		X	$y = 7^{2x} - 4(7^x) + 3$		
0.2 -0.72519 0.3 -0.95706 0.4 -0.96835 0.5 -0.58301 0.51 -0.51316 0.52 -0.43638 0.53 -0.3523 0.54 -0.26055 0.55 -0.16074 0.56 -0.05247 0.561 -0.04116 0.562 -0.02976 0.563 -0.01828 0.564 -0.0067 0.57 0.064688 0.58 0.19118 0.59 0.327466 0.6 0.474029 0.7 2.62723 0.8 6.525565 0.9 13.15414 1 24		0	0		
0.3		0.1	-0.38348		
0.4		0.2	-0.72519		
0.5		0.3	-0.95706		
0.51		0.4	-0.96835		
$\begin{array}{ c c c c c }\hline 0.52 & -0.43638 \\ \hline 0.53 & -0.3523 \\ \hline 0.54 & -0.26055 \\ \hline 0.55 & -0.16074 \\ \hline 0.561 & -0.04116 \\ \hline 0.562 & -0.02976 \\ \hline 0.563 & -0.01828 \\ \hline 0.564 & -0.0067 \\ \hline 0.565 & 0.00497 \\ \hline 0.57 & 0.064688 \\ \hline 0.58 & 0.19118 \\ \hline 0.99 & 0.327466 \\ \hline 0.6 & 0.474029 \\ \hline 0.7 & 2.62723 \\ \hline 0.8 & 6.525565 \\ \hline 0.99 & 13.15414 \\ \hline 1 & 24 \\ \hline For a full method of trial and improvement by trialing f(value between 0.1 and 0.5645) = value and f(value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. Both of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f(value between 0.5645 and 0.5645) = value and f(value between 0.5645 and 0.5645) = value and f(value between 0.5646 and 0.5645) = value and f(value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) x = 0$		0.5	-0.58301		
$\begin{array}{ c c c c c }\hline 0.53 & -0.3523 \\ \hline 0.54 & -0.26055 \\ \hline 0.55 & -0.16074 \\ \hline 0.56 & -0.05247 \\ \hline 0.561 & -0.04116 \\ \hline 0.562 & -0.02976 \\ \hline 0.563 & -0.01828 \\ \hline 0.564 & -0.0067 \\ \hline 0.565 & 0.00497 \\ \hline 0.57 & 0.064688 \\ \hline 0.58 & 0.19118 \\ \hline 0.59 & 0.327466 \\ \hline 0.6 & 0.474029 \\ \hline 0.7 & 2.62723 \\ \hline 0.8 & 6.525565 \\ \hline 0.9 & 13.15414 \\ \hline 1 & 24 \\ \hline For a full method of trial and improvement by trialing f(value between 0.1 and 0.5645) = value and f(value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. An method to confirm root to 2 dp by finding by trialing f(value between 0.56and 0.5645) = value and f(value between 0.56and 0.5645) = value and f(value between 0.56and 0.5645) = value and f(value between 0.56and 0.5645) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) x = 0 $		0.51	-0.51316		
$\begin{array}{ c c c c c }\hline 0.54 & -0.26055 \\ \hline 0.55 & -0.16074 \\ \hline 0.56 & -0.05247 \\ \hline 0.561 & -0.04116 \\ \hline 0.562 & -0.02976 \\ \hline 0.563 & -0.01828 \\ \hline 0.564 & -0.0067 \\ \hline 0.565 & 0.00497 \\ \hline 0.57 & 0.064688 \\ \hline 0.58 & 0.19118 \\ \hline 0.59 & 0.327466 \\ \hline 0.6 & 0.474029 \\ \hline 0.7 & 2.62723 \\ \hline 0.8 & 6.525565 \\ \hline 0.9 & 13.15414 \\ \hline 1 & 24 \\ \hline For a full method of trial and improvement by trialing f(value between 0.1 and 0.5645) = value and f(value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f(value between 0.56and 0.5645) = value and f(value between 0.5645 and 0.5645) = value and f(value between 0.5645 and 0.565) = value and f(value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) x = 0 x = 0.56 (only) x = 0 x = 0.56 (only) x = 0 x = 0.5645 then give$		0.52	-0.43638		
$\begin{array}{ c c c c c }\hline 0.55 & -0.16074 \\ \hline 0.56 & -0.05247 \\ \hline 0.561 & -0.04116 \\ \hline 0.562 & -0.02976 \\ \hline 0.563 & -0.01828 \\ \hline 0.564 & -0.0067 \\ \hline 0.565 & 0.00497 \\ \hline 0.57 & 0.064688 \\ \hline 0.58 & 0.19118 \\ \hline 0.59 & 0.327466 \\ \hline 0.6 & 0.474029 \\ \hline 0.7 & 2.62723 \\ \hline 0.8 & 6.525565 \\ \hline 0.9 & 13.15414 \\ \hline 1 & 24 \\ \hline \end{array}$ For a full method of trial and improvement by trialing f(value between 0.1 and 0.5645) = value and f(value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f(value between 0.56 and 0.5645) = value and f(value between 0.56 and 0.5645) = value and f(value between 0.5645 and 0.5655) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) A1 B1 $x = 0.56$ (only) B1 $x = 0.56$		0.53	-0.3523		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.54	-0.26055		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.55	-0.16074		
$\begin{array}{ c c c c }\hline 0.562 & -0.02976 \\\hline 0.563 & -0.01828 \\\hline 0.564 & -0.0067 \\\hline 0.565 & 0.00497 \\\hline 0.57 & 0.064688 \\\hline 0.58 & 0.19118 \\\hline 0.59 & 0.327466 \\\hline 0.6 & 0.474029 \\\hline 0.7 & 2.62723 \\\hline 0.8 & 6.525565 \\\hline 0.9 & 13.15414 \\\hline 1 & 24 \\\hline \end{array}$ For a full method of trial and improvement by trialing f(value between 0.1 and 0.5645) = value and f(value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f(value between 0.56and 0.5645) = value and f(value between 0.56and 0.5645) = value and f(value between 0.566 and 0.5645) = value and f(value between 0.566 and 0.5655) = value and f(value between 0.56645 and 0.5655) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) $x = 0$		0.56			
$\begin{array}{ c c c c }\hline 0.563 & -0.01828 \\ \hline 0.564 & -0.0067 \\ \hline 0.565 & 0.00497 \\ \hline 0.57 & 0.064688 \\ \hline 0.58 & 0.19118 \\ \hline 0.59 & 0.327466 \\ \hline 0.6 & 0.474029 \\ \hline 0.7 & 2.62723 \\ \hline 0.8 & 6.525565 \\ \hline 0.9 & 13.15414 \\ \hline 1 & 24 \\ \hline For a full method of trial and improvement by trialing f(value between 0.1 and 0.5645) = value and f(value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. An ethod to confirm root to 2 dp by finding by trialing f(value between 0.5643 and 0.5645) = value and f(value between 0.5645 and 0.5645) = value and f(value between 0.5645 and 0.5655) = value and f(value between 0.5645 $		0.561			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.563			
$\begin{array}{ c c c c c }\hline 0.57 & 0.064688 \\ \hline 0.58 & 0.19118 \\ \hline 0.59 & 0.327466 \\ \hline 0.6 & 0.474029 \\ \hline 0.7 & 2.62723 \\ \hline 0.8 & 6.525565 \\ \hline 0.9 & 13.15414 \\ \hline 1 & 24 \\ \hline \end{array}$ For a full method of trial and improvement by trialing f (value between 0.1 and 0.5645) = value and f (value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. An method to confirm root to 2 dp by finding by trialing f (value between 0.56and 0.5645) = value and f (value between 0.56and 0.5645) = value and f (value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) and $x = 0$. So $x = 0.56$ (only) B1 Note: If a candidate goes from $x = 0$ with no working to $x = 0.5645$ then give					
$\begin{array}{ c c c c c }\hline 0.58 & 0.19118 \\ \hline 0.59 & 0.327466 \\ \hline 0.6 & 0.474029 \\ \hline 0.7 & 2.62723 \\ \hline 0.8 & 6.525565 \\ \hline 0.9 & 13.15414 \\ \hline 1 & 24 \\ \hline \\ For a full method of trial and improvement by trialing f(value between 0.1 and 0.5645) = value and f(value between 0.5645 and 1) = value \\ Any one of these values correct to 1sf or truncated 1sf. & A1 Both of these values correct to 1sf or truncated 1sf. & A1 A method to confirm root to 2 dp by finding by trialing f(value between 0.5645 and 0.5645) = value and f(value between 0.5645 and 0.5645) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) & x = 0 Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) B1 B1 B1 (6)$					
$\begin{array}{ c c c c c }\hline 0.59 & 0.327466 \\ \hline 0.6 & 0.474029 \\ \hline 0.7 & 2.62723 \\ \hline 0.8 & 6.525565 \\ \hline 0.9 & 13.15414 \\ \hline 1 & 24 \\ \hline \\ For a full method of trial and improvement by trialing f (value between 0.1 and 0.5645) = value and f (value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. Both of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f (value between 0.5645 and 0.5645) = value and f (value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) All x = 0 Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) Both values$					
$\begin{array}{ c c c c c }\hline 0.6 & 0.474029 \\ \hline 0.7 & 2.62723 \\ \hline 0.8 & 6.525565 \\ \hline 0.9 & 13.15414 \\ \hline 1 & 24 \\ \hline \\ For a full method of trial and improvement by trialing f (value between 0.1 and 0.5645) = value and f (value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. Anethod to confirm root to 2 dp by finding by trialing f (value between 0.56 and 0.5645) = value and f (value between 0.56 and 0.5645) = value and f (value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) x = 0 B1 Note: If a candidate goes from 7^x = 3 with no working to x = 0.5645 then give$					
$\begin{array}{ c c c c c }\hline 0.7 & 2.62723 \\ \hline 0.8 & 6.525565 \\ \hline 0.9 & 13.15414 \\ \hline 1 & 24 \\ \hline \\ For a full method of trial and improvement by trialing f (value between 0.1 and 0.5645) = value and f (value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. A1 Both of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f (value between 0.5645 and 0.5645) = value and f (value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) x = 0 B1 Note: If a candidate goes from 7^x = 3 with no working to x = 0.5645 then give$					
$\begin{array}{ c c c c c }\hline 0.8 & 6.525565 \\ \hline 0.9 & 13.15414 \\ \hline 1 & 24 \\ \hline \\ For a full method of trial and improvement by trialing f (value between 0.1 and 0.5645) = value and f (value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. Both of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f (value between 0.5645 and 0.5645) = value and f (value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is x = 0.56 (only) x = 0 B1 Note: If a candidate goes from 7^x = 3 with no working to x = 0.5645 then give$					
For a full method of trial and improvement by trialing f (value between 0.1 and 0.5645) = value and f (value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. Both of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f (value between 0.56 and 0.5645) = value and f (value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.566$ (only) $x = 0$ Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give					
For a full method of trial and improvement by trialing f (value between 0.1 and 0.5645) = value and f (value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. Both of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f (value between 0.5645 and 0.5645) = value and f (value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) $x = 0$ Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give					
For a full method of trial and improvement by trialing f (value between 0.1 and 0.5645) = value and f (value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. Both of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f (value between 0.56and 0.5645) = value and f (value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) $x = 0$ Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give					
f (value between 0.1 and 0.5645) = value and f (value between 0.5645 and 1) = value Any one of these values correct to 1sf or truncated 1sf. Both of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f (value between 0.56 and 0.5645) = value and f (value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) $x = 0$ Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give				d in a management has taked in	
Any one of these values correct to 1sf or truncated 1sf. Both of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing $f(\text{value between } 0.56 \text{ and } 0.5645) = \text{value and}$ $f(\text{value between } 0.5645 \text{ and } 0.565) = \text{value}$ Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56 \text{ (only)}$ $x = 0$ B1 Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give					M1
Both of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f (value between 0.56 and 0.5645) = value and f (value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) $x = 0$ B1 Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give					Λ1
A method to confirm root to 2 dp by finding by trialing $f(\text{value between } 0.56 \text{ and } 0.5645) = \text{value and}$ $f(\text{value between } 0.5645 \text{ and } 0.565) = \text{value}$ Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56 \text{ (only)}$ $x = 0$ B1 $x = 0$ Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give					
f (value between 0.56 and 0.5645) = value and f (value between 0.5645 and 0.565) = value Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) $x = 0$ Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give					7
Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) $x = 0$ Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only) Both values correct to 1sf or truncated 1sf and the confirmation that the root is $x = 0.56$ (only)					M1
$x = 0.56 \text{ (only)}$ $x = 0$ B1 (6) Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give					
$x = 0$ B1 (6) Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give				truncated 1sf and the confirmation that the root is	A1
Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give		1	Jiiiy)		R1
Note: If a candidate goes from $7^x = 3$ with no working to $x = 0.5645$ then give					
		Note: If a	a candidate goes fr	from $7^x = 3$ with no working to $x = 0.5645$ then give	
1711/11 Implies.			_		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code US026235 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH