

Mathematics

Advanced Subsidiary GCE

Unit 4728: Mechanics 1

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

1 i	$\Delta Mom P = 0.5(2.4 + 0.2)$ $\Delta Mom P = +/-1.3 \text{ kgms}^{-1}$	M1 A1 [2]	+/- 0.5(2.4 ± 0.2)	MR P/Q +/-0.8(1.5+/-0.2) M1A0
ii	$\begin{array}{l} \mbox{Momentum before} = 0.5x2.4 - 0.8x1.5 \\ 0.5x2.4 + / - 0.8x1.5 = + / (-0.5x0.2 + / - 0.8v) \\ \mbox{Speed} = 0.125 \ \mbox{ms}^{-1} \\ \mbox{OR} \\ \mbox{\Delta Mom } Q = + / - (+ / - 0.8v - 0.8x1.5) \\ 1.3 = + / - (0.8v - 0.8x1.5) \\ \mbox{Speed} = 0.125 \ \mbox{ms}^{-1} \end{array}$	B1 M1 A1ft A1 [4] B1 M1 A1ft A1	+/-($0.5x2.4 - 0.8x1.5$) Uses mom before = mom after Cv(Expression for before momentum) 1/8, +ve (not 0.13) Uses Δ Mom P = Δ Mom Q Cv(ans(i)) = +/-(+/-0.8v - 0.8x1.5) 1/8, +ve (not 0.13)	Cont MR 0.5x2.4-0.8x1.5 Uses mom before = mom after 0.5x2.4+/-0.8x1.5 = +/-(0.8x0.2+/-0.5v) 0.32 B1 M1A1A1 ft
2 i	10CorSa = 8 10cosa = 8 $a = 36.9^{\circ}$ OR 10CorSa = F 10sina = 6 $a = 36.9^{\circ}$ OR $tan\theta = F/8$ tana = 6/8 $a = 36.9^{\circ}$	M1 A1 [3] M1 A1ft A1 M1 A1ft A1	Component of $10 = 8$ Accept 37 36.8 and 37 from 36.7 Using value of F(ii) Using F(=6) from (ii) OR tan θ = 8/F, using value of F from (ii)	CorS is Cos or Sin (passim) Do not accept 36.7
ii	F = 10sin36.9 F = 6 N OR $F^2 + 8^2 = 10^2$ F = 6 N	M1 A1ft A1 [3] M1 A1 A1	$F = 10CorS\alpha$ Allow 10Cos53.1 Accept 6.01 (or from 10Cos53.1) or 6.0 Pythagoras, 3 squared terms	anything rounding to 6.0 from correct working. Accept $F^2 = 8^2 + 10^2$

3 i	$v^2 = (+/-5)^2 + 2x9.8x2.5$ Speed (or v) = 8.6(0) ms ⁻¹	M1 A1 A1	Uses $v^2 = u^2 \pm 2gs$, u non-zero Accept $\sqrt{74}$ Do not accept -8.6(0)	It is common to see the upwards and downwards motion treated separately. Both parts must be attempted for M1, and both parts must be
	OR	[3]		attempted accurately with cvs for the A1
	$0 = 5^2 - 2x9.8xs$ with $v^2 = (0) + 2x9.8(s+2.5)$	M1	s = 1.2755	
	$v^2 = 2x9.8x(2.5+1.28)$	A1	19.8x3.7755	
	Speed = $8.6(0) \text{ ms}^{-1}$	A1	Or rounds to 8.6	
ii		M1	Uses v(from (i)) = $+/-5 +/-9.8t$	It is common to see the upwards and downwards
	8.6 = -5 + 9.8t	A1ft	Cv(8.60 from (i))	motion treated separately. Both parts must be
	Time = 1.39 s	A1		attempted for M1, and both parts must be
	OR	[3]		attempted accurately with cvs for the A1
		M1	$+/-2.5 = 5t +/- gt^{2}/2$	
	$9.8t^2 - 10t - 5 = 0$	A1		
	Time = 1.39 s	A1		
	OR	N/1		
		M1	$2.5 = +/-(5 - \text{Speed from (i)}) \times t/2$	
	2.5 = (8.6-5)t/2	A1ft	Cv(8.60 from (i))	
	Time = 1.39 s	A1		
	OR	M1	Times to tag and success d found and added	
	t = 5/9.8 + 8.6/9.8	A1ft	Times to top and ground found and added Cv(8.60 from (i))	
	T = 5/9.8 + 8.6/9.8 Time = 1.39	Altt Al	CV(8.00 from (1))	
	11110 = 1.39	AI		
iii	v, ms^{-1}	B1	Straight descending line to t axis	Ignore values written on diagrams
a)	v, ms	B1	Continues straight below t axis	
Í			Ŭ	
	<i>t, s</i>			
b)	<i>x</i> , <i>m</i>	B1	Inverted "parabolic" curve, starts anywhere on t=0	
		DI		
1		B1	Ends below $t = 0$ level, need not be below t axis	
		F 43		
		[4]		

4	$2 - F = 0.8 \times 0.2$	M1	N2L 2 force terms and ma $(F = 1.84 \text{ N})$	m is the block mass, award if T not F
i	$F = T\cos 10$	M1	F = TCorS10	
	T = 1.87 N	A1	1.8683	
	OR	[3]		
		M1	N2L 2 force terms and ma	
	$2 - T\cos 10 = 0.8x0.2$	M1	TCorS10	
	T = 1.87 N	A1		
ii	R - 0.3x9.8 + TCorS10 = 0	M1	3 term equation, vertically	Treat as a mis-read R-0.8x9.8-TCorS10 = 0
	R = 0.3x9.8 - 1.87sin10	A1ft	cv(T(i))	leading to R=8.16 (i.e.works on block[2/3]
	R = 2.62	A1ft	2.61(5) seen or implied	
	$T\cos 10 - Fr = 0.3x0.2$	M1	N2L 2 forces for P, component of T	OR N2L 2 forces for P+Q:
	Fr = 1.78	A1ft	cv(T(i)) seen or implied	2 - Fr = (0.8 + 0.3)x0.2
	$\mu = 1.78 / 2.62 \text{ OR } 1.78 = 2.62 \mu$	M1	both terms same sign	R, Fr unequal to T
	$\mu = 0.68$	A1		From correct value of $T = 1.87$ only
		[7]		
5		M1	s=ut+0.5at ² used along plane or vertically, with	
ia	$s(P) = 4.9T + 0.5x 4.9T^2$	A1	u = 4.9 or 0, and $a = 4.9$ or 9.8 appropriately	
	$y(Q) = (0) + 0.5x9.8T^2$	A1	Accept use of t or T Allow g in Y(Q)	
		[3]		
b	$(m)x4.9 = (m)gsin\theta$	M1*	Allow CorS0	$\sin\theta = (0.5x9.8T^2)/(4.9T + 0.5x 4.9T^2)$ gets
	$\theta = 30$	A1		M1, but in ic. Beware circular argument.
		[2]		
с	$y(Q)/s(P) = sin\theta$ OR $y(Q) = s(P) sin\theta$	M1	Uses appropriate trigonometry to relate distances	This may appear in b)
	$0.5x9.8(2/3)^2 / (4.9x2/3 + 2.45(2/3)^2 = 0.5$		Verification needs explicit value of $sin(cv(\theta ib))$	$0.5 \times 9.8(2/3)^2 = (4.9 \times 2/3 + 2.45(2/3)^2 \times 0.5)^2$
	OR $0.5x9.8T^2 / (4.9T + 2.45T^2) = \sin 30$	D*M1	Ratio of distances considered using cv (30)	OR $0.5 \times 9.8 \text{T}^2 = (4.9 \text{T} + 2.45 \text{T}^2) \times \sin 30$
	T=2/3 s AG	A1		
		[3]		
ii	v = 4.9 + 4.9x2/3 OR v = (0) + 9.8x2/3	M1	Uses $v = u + at$, with appropriate u, a values once	
	$v = 8.17 \text{ ms}^{-1}$	A1	8.2	
	$w = 9.8x^{2}/3 = 6.53 \text{ ms}^{-1}$	A1	6.5	
1		[3]		

6 i	$ \begin{array}{l} x = \int t^2 - 9 \ dt \\ x = t^3/3 - 9t \ (+c) \\ Finds \ x(2) \\ Displacement = 15\frac{1}{3} \ m \\ OR \\ x(2) = [t^3/3 - 9t]_0^2 \\ Displacement = 15\frac{1}{3} \ m \end{array} $	M1* A1 D*M1 B1 [4] D*M1 B1	Uses integration of v(t) Award if +c omitted Allow + c or c omitted Accept 15.3, 46/3. Must be +ve Uses \lim_{0}^{2} on integrated x(t) Must be +ve	Awarded if c omitted or assumed 0
ii	t=0 s=0 or s=46/3 hence x(0) or c= 0 or 46/3 Solves $t^2 - 9 = 0$ t = (±)3 x(3) = $3^3/3 -9x3$ (+ 15.3) x(3) = -18 (or -2.67) Dist = 18 m	B1* M1* A1 D*M1 M1 D*B1 [6]	Needs explanation, may be seen in part iMay be impliedValue of t when direction of motion changesSubstitutes $cv(t) > 2$ in integrated $x(t)$ Evaluates $c - 18$ may be implied award ifAccept 18(.0)[c=0 assumed]	B1* awarded if limits 0 and 3 used correctly Awarded if limits used correctly
iii	$a = d(t^{2} - 9)/dt$ a = 2t 10 = 2t t = 5 $x(5) (= 5^{3}/3 - 9x5 + 15.3) = 12 \text{ m}$ OR $[t^{3}/3 - 9t]_{2}^{5} = 12 \text{ m}$	M1* A1 D*M1 A1 A1 [5] A1	Uses differentiation of v(t)	

4728

Wt cmpts: // plane 0.6gsin30	B1	+/-2.94	
Perp plane 0.6gcos30			
•			Accept Fr for X
,			
			Accept $Fr = X $
$\mu = 0.601$	A1	0.6	
OR	[7]		
$3.06 = \mu x 5.09(22)$	M1	Uses $Fr = \mu R$ both terms same sign	Accept $Fr = X $
$\mu = 0.601$	A1	0.6	
$C^2 = 3.06^2 + 5.09^2$	M1	Pythagoras with Fr and R, to find hypotenuse	
C = 5.94 N	A1	Accept 5.9, 5.95 but not 6(.0)	
$\tan\theta = 3.06/5.09(22)$	M1*	Or $tan\theta = \mu$	
Angle = $(31) + 90$	D*M1	·	
	A1	Not 120	
OR	[5]		
$\tan \phi = 5.09(22)/3.06$		$\tan \phi = 1/\mu$	
8		Not 120	
C (= 0.6x9.8) = 5.88 N	B1	5.9	No working needed as C is vertical
Angle = 60°	B1		No working needed as C is vertical
Ŭ,	[2]		č
	Perp plane 0.6gcos30 0.6gsin30 +/- X = 0.6x10 X = +/-3.06 μ = 3.06 / 5.09(22) μ = 0.601 OR 3.06 = μ x 5.09(22) μ = 0.601 C ² = 3.06 ² + 5.09 ² C = 5.94 N tan θ = 3.06/5.09(22) Angle = (31) + 90 Angle = 121° OR tan φ = 5.09(22)/3.06 Angle = 180 - (59) Angle = 121°	Perp plane 0.6gcos30B10.6gsin30 +/- X = 0.6x10A1ft $X = +/-3.06$ A1 $\mu = 3.06 / 5.09(22)$ M1 $\mu = 0.601$ A1OR[7] $3.06 = \mu x 5.09(22)$ M1 $\mu = 0.601$ A1 $C^2 = 3.06^2 + 5.09^2$ M1 $C = 5.94$ NA1 $\tan \theta = 3.06/5.09(22)$ M1*Angle = (31) + 90D*M1Angle = 121°A1OR[5] $\tan \phi = 5.09(22)/3.06$ M1*Angle = 180 - (59)D*M1Angle = 121°A1C (= 0.6x9.8) = 5.88 NB1	Perp plane 0.6gcos30B1 $+/-5.09(22.) = R$ 0.6gsin30 +/- X = 0.6x10A1ftBoth weight cmpt and accn signs sameX = +/-3.06A1ftBoth weight cmpt and accn signs same $\mu = 3.06 / 5.09(22)$ A1ftBoth weight cmpt and accn signs same $\mu = 0.601$ A1Uses $\mu = Fr/R$ both terms same sign0.6[7] $3.06 = \mu x 5.09(22)$ M1Uses Fr = μR both terms same sign $\mu = 0.601$ A10.6[7] $3.06 = \mu x 5.09(22)$ M1 $\mu = 0.601$ A1 $C = 5.94 N$ A1 $tan = 3.06/5.09(22)$ M1 $tan = 3.06/5.09(22)$ M1* $Angle = (31) + 90$ M1* $Angle = 121^{\circ}$ D*M1 OR [5] $tan \varphi = 5.09(22)/3.06$ M1* $Angle = 180 - (59)$ D*M1 $Angle = 121^{\circ}$ A1 $C = 0.6x9.8) = 5.88 N$ B1 $Angle = 60^{\circ}$ B1

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

