



# Mathematics (MEI)

Advanced Subsidiary GCE

Unit 4766: Statistics 1

# Mark Scheme for January 2011

|      | SECTION A                                                                                                                                  |                                                                                                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q1   | Mode = 960 (grams)                                                                                                                         | B1 CAO                                                                                                        |   | Ignore units and working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (i)  | Median = $1020$ (grams)                                                                                                                    | B1 CAO                                                                                                        | 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | N.B. 96 and 102 gets SC1                                                                                                                   |                                                                                                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (ii) | Positive                                                                                                                                   | E1                                                                                                            | 1 | Not right skewed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                                            |                                                                                                               |   | Not positive correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                            | TOTAL                                                                                                         | 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Q2   | P(-1) = 10 13 0.0125                                                                                                                       | B1                                                                                                            |   | Allow 0.813 or 0.812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (i)  | P(product of two scores $< 10) = \frac{1}{16} = 0.8125$                                                                                    |                                                                                                               | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (ii) | P(even) × P(< 10) = $0.5 \times \frac{13}{16} = \frac{13}{32} = 0.40625$<br>P(even ∩ < 10) = $\frac{6}{16} = 0.375$<br>So not independent. | M1 for $0.5 \times \frac{13}{16}$ or $\frac{13}{32}$<br>FT their answer to (i)<br>M1 for $\frac{6}{16}$<br>A1 | 3 | Do not allow these embedded in probability formulae<br>Also allow P(even <10) = $6/13 \neq P(even) = 1/2$<br>Or P(<10 even) = $6/8 \neq P(<10) = 13/16$<br>Or P(even <10) = $6/13 \neq P(even <10') = 2/3$<br>Or P(<10 even) = $6/8 \neq P(<10 even') = 7/8$<br>For all of these alternatives allow M2 for both<br>probabilities. (M1 not available except if they correctly<br>state both probabilities EG P(even <10) and P(even)<br>and get one correct)<br>If they do not state what probabilities they are finding,<br>give M2 for one of the above pairs of probabilities<br>with $\neq$ symbol |
|      |                                                                                                                                            | TOTAL                                                                                                         | 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                            |                                                                                                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Q3<br>(i) | $\begin{pmatrix} 13\\ 3 \end{pmatrix}$ ways of choosing the men = 286     | M1 for $\begin{pmatrix} 13\\ 3 \end{pmatrix}$ seen<br>A1              | 2 | Accept <sup>13</sup> C <sub>3</sub> or <sup>13!</sup> / <sub>(3!10!)</sub> or equivalent for M1<br>No marks for permutations                                                                                                                                                                                                                                                                                     |
|-----------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)      | $\binom{13}{3} \times \binom{10}{3} = 286 \times 120 = 34320$             | M1 for product<br>A1 FT their 286                                     | 2 | For permutations $1716 \times 720 = 1235520$ allow SC1<br>406 (from 286 + 120) scores SC1 (without further<br>working)                                                                                                                                                                                                                                                                                           |
| (iii)     | $\binom{23}{6} = 100947$<br>34320/100947 = 1040/3059 = 0.340 (allow 0.34) | M1 for denominator of $ \begin{pmatrix} 23 \\ 6 \end{pmatrix} $ A1 FT | 2 | FT their 34320<br>Or ${}^{6}C_{3} \times 13/23 \times 12/22 \times 11/21 \times 10/20 \times 9/19 \times 8/18 =$<br>0.340 scores M1 for product of fractions and A1 for<br>${}^{6}C_{3} \times$ and correct evaluation<br>For permutations 1235520/72681840=0.017 scores<br>SC1<br>Allow full marks for fractional answers, even if<br>unsimplified<br>406/100947 = 0.00402 gets M1A1 with or without<br>working |
|           |                                                                           | TOTAL                                                                 | 6 |                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |                                                                           |                                                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Q4<br>(i) | $2k + 6k + 12k + 20k + 30k = 1, \ 70k = 1$ $k = \frac{1}{70}$                                                                                                                                                                                                                                                                              | M1<br>A1 NB ANSWER<br>GIVEN                                                                                                                                                                                                                   | 2 | For five multiples of $k$ (at least four correct multiples)<br>Do not need to sum or =1 for M1<br>Condone omission of either $70k = 1$ or $k = 1/70$ but not<br>both<br>Condone omission of $k$ : 2+6+12+20+30=70<br>Allow substitution of $k = 1/70$ into formula and<br>getting at least four of 2/70, 6/70, 12/70, 20/70, 30/70<br>for M1 and 2/70+6/70+12/70+20/70+30/70 = 1 for A1                                                                                                                                                                                                                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)      | $E(X) = 1 \times \frac{2}{70} + 2 \times \frac{6}{70} + 3 \times \frac{12}{70} + 4 \times \frac{20}{70} + 5 \times \frac{30}{70} = 4$<br>$E(X^{2}) = 1 \times \frac{2}{70} + 4 \times \frac{6}{70} + 9 \times \frac{12}{70} + 16 \times \frac{20}{70} + 25 \times \frac{30}{70} = \frac{1204}{70} = 17.2$<br>$Var(X) = 17.2 - 4^{2} = 1.2$ | M1 for $\Sigma rp$ (at least 3<br>terms correct)<br>A1 CAO<br>M1 for $\Sigma r^2 p$ (at least 3<br>terms correct)<br>M1dep for - their E(X) <sup>2</sup><br>A1 FT their E(X) but<br>not an error in E(X <sup>2</sup> )<br>provided Var(X) > 0 | 5 | 280/70 scores M1A0<br>USE of $E(X-\mu)^2$ gets M1 for attempt at $(x-\mu)^2$ should<br>see $(-3)^2$ , $(-2)^2$ , $(-1)^2$ , $0^2$ , $1^2$ (if $E(X)$ correct but FT their<br>$E(X)$ ) (all 5 correct for M1), then M1 for $\Sigma p(x-\mu)^2$ (at<br>least 3 terms correct with their probabilities)<br>Allow all M marks with their probabilities, (unless not<br>between 0 and 1, see below for all probs 1/70).<br>Division by 5 or other spurious value at end gives max<br>M1A1M1M1A0, or M1A0M1M1A0 if $E(X)$ also<br>divided by 5.<br>Unsupported correct answers get 5 marks.<br>SC2 for use of 1/70 for all probabilities leading to<br>E(X) = 3/14 and Var(X) = 145/196 = 0.74 |
|           |                                                                                                                                                                                                                                                                                                                                            | TOTAL                                                                                                                                                                                                                                         | 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Q5    |                                                                                                                                                                        |                                                                                                                                         |   | Fractional answer = $7/25$ (Allow 28/100)                                                                                                                                                                                                            |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)   | P(Wet and bus) = $0.4 \times 0.7$                                                                                                                                      | M1 for multiplying                                                                                                                      |   |                                                                                                                                                                                                                                                      |
|       | = 0.28                                                                                                                                                                 | probabilities                                                                                                                           | 2 |                                                                                                                                                                                                                                                      |
|       |                                                                                                                                                                        | A1 CAO                                                                                                                                  |   |                                                                                                                                                                                                                                                      |
| (ii)  | $P(Walk \text{ or bike}) = 0.6 \times 0.5 + 0.6 \times 0.4 + 0.4 \times 0.2 + 0.4 \times 0.1 \text{ or} 0.3 + 0.24 + 0.08 + 0.04$ $= 0.66$                             | M1 for any two correct<br>pairs<br>M1 for sum of all four<br>correct terms<br>With no extra terms for<br>second M1<br>A1 CAO            | 3 | Or = $0.6 \times 0.9 + 0.4 \times 0.3$ gets M1 for either term<br>= $0.54 + 0.12$ gets M1 for sum of both<br>A1 CAO<br>Or = $1 - 0.6 \times 0.1 - 0.4 \times 0.7 = 0.66$ . M1 for $1 - $ one<br>correct term, M1 for complete correct expression and |
|       |                                                                                                                                                                        |                                                                                                                                         |   | A1 for correct evaluation.                                                                                                                                                                                                                           |
| (iii) | P(Dry given walk or bike) = $\frac{P(\text{Dry and walk or bike})}{P(\text{Walk or bike})}$ $= \frac{0.6 \times 0.9}{0.66} = \frac{0.54}{0.66} = \frac{9}{11} = 0.818$ | M1 for numerator<br>leading to 0.54<br>M1 for denominator<br>Ft their P(Walk or bike)<br>from (ii) provided<br>between 0 and 1<br>A1 FT | 3 | Allow 0.82, not 0.819 More accurate answer<br>=0.81818 Fractional answer = $54/66 = 27/33 = 9/11$<br>Condone answer of 0.8181<br>Do not give final A1 if ans $\ge 1$                                                                                 |
|       |                                                                                                                                                                        | TOTAL                                                                                                                                   | 8 |                                                                                                                                                                                                                                                      |
|       |                                                                                                                                                                        |                                                                                                                                         |   |                                                                                                                                                                                                                                                      |

| Q6<br>(i) | (A) P(Avoided air travel) $=\frac{7}{100} = 0.07$<br>(B) P(At least two) $=\frac{11+2+1+4}{100} = \frac{18}{100} = \frac{9}{50} = 0.18$ | B1 aef isw<br>M1 for (11+2+1+4)/100<br>A1 aef isw                                    | 1<br>2 | For M1 terms must be added<br>must be as above or better with no extra terms (added<br>or subtracted) for M1<br>Must simplify to 18/100 or 9/50 or 0.18 for A1<br>SC1 for 18/58<br>Or $1 - (14+26+0+42)/100 = 0.18$ gets M1A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)      | P(Reduced car use   Avoided air travel) $=\frac{6}{7} = 0.857$                                                                          | M1 for denominator 7<br>or 7/100 or 0.07 FT<br>their (i)A<br>A1 CAO                  | 2      | Allow 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (iii)     | P(None have avoided air travel) = $\frac{93}{100} \times \frac{92}{99} \times \frac{91}{98} = 0.8025$                                   | M1 for 93/100× (triple<br>product)<br>M1 for product of<br>remaining fractions<br>A1 | 3      | Fuller answer 0.802511, so allow 0.803 without<br>working, but 0.80 or 0.8 only with working .<br>$(93/100)^3$ scores M1M0A0 which gives answer<br>0.804357 so watch for this.<br>M0M0A0 for binomial probability including $0.93^{100}$<br>but ${}^{3}C_{0} \times 0.07^{0} \times 0.93^{3}$ still scores M1<br>$(k/100)^3$ for values of k other than 93 scores M0M0A0<br>$\frac{k}{100} \times \frac{(k-1)}{99} \times \frac{(k-2)}{98}$ for values of k other than 93 scores<br>M1M0A0<br>Correct working but then multiplied or divided by<br>some factor scores M1M0A0<br>${}^{93}P_3 / {}^{100}P_3 = 0.803 {}^{93}P_3$ seen M1 divided by ${}^{100}P_3$<br>M1 0.803 A1<br>${}^{93}C_3 / {}^{100}C_3 = 0.803$<br>Allow unsimplified fractional answer 778596/970200<br>=9269/11550 |
|           |                                                                                                                                         | TOTAL                                                                                | 8      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           |                                                                                                                                         |                                                                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|           | SECTION                                                                       | B                                                           |                                  |                                  |                                            |   |                                                                                                                                                                                                                                                      |
|-----------|-------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q7<br>(i) | Income                                                                        | Engguenau                                                   | Width                            | ED                               | M1 for fds                                 |   | At least 4 fds correct for M1<br>M1 can be also be gained from freq per 10K - 119.                                                                                                                                                                   |
| (-)       | Income                                                                        | Frequency                                                   | width                            | ГD                               | A1 CAO                                     |   | 182.5, 71, 32, 4.5 (at least 4 correct) and A1 for all                                                                                                                                                                                               |
|           | $0 \le x \le 20$                                                              | 238                                                         | 20                               | 11.9                             |                                            |   | correct                                                                                                                                                                                                                                              |
|           | $20 < x \le 40$                                                               | 365                                                         | 20                               | 18.25                            | Accept any suitable unit                   |   | Accept any suitable unit for fd, eg freq per £10K, BUT                                                                                                                                                                                               |
|           | $40 < x \le 60$                                                               | 142                                                         | 20                               | 7.1                              | for fd such as eg freq                     |   | NOT FD per £1000                                                                                                                                                                                                                                     |
|           | $60 < x \le 100$                                                              | 128                                                         | 40                               | 3.2                              | per £1000.                                 |   | Allow lds correct to at least one dp<br>If fd not explicitly given M1 A1 can be gained from                                                                                                                                                          |
|           | $100 < x \le 200$                                                             | 45                                                          | 100                              | 0. 5                             |                                            |   | all heights correct (within one square) on histogram                                                                                                                                                                                                 |
|           | m - 50                                                                        |                                                             |                                  |                                  |                                            |   | (and M1A0 if at least 4 correct)                                                                                                                                                                                                                     |
|           |                                                                               |                                                             |                                  |                                  | L1 linear scale and                        |   | Allow restart although given fd wrong                                                                                                                                                                                                                |
|           | 16                                                                            |                                                             |                                  |                                  | label on vertical axis                     |   |                                                                                                                                                                                                                                                      |
|           |                                                                               |                                                             |                                  |                                  | W1 linear cools or                         |   | For L1, label required on vert axis in relation to first                                                                                                                                                                                             |
|           | 10                                                                            |                                                             |                                  |                                  | w I linear scale on<br>horizontal axis and | 5 | freq/f10K freq/fk etc (NOT fd/f10K)                                                                                                                                                                                                                  |
|           |                                                                               |                                                             |                                  |                                  | correct width of bars                      | 5 | Accept f/w or f/cw (freq/width or freq/class width)                                                                                                                                                                                                  |
|           |                                                                               |                                                             |                                  |                                  |                                            |   | Ignore horizontal label                                                                                                                                                                                                                              |
|           | 20 40                                                                         | 60 60                                                       | 180 120                          | 140 160 188 1                    | H1 height of bars                          |   | L1 can also be gained from an accurate key – may see<br>1 square = 36.5 or 23.8 or 14.2                                                                                                                                                              |
|           |                                                                               |                                                             |                                  |                                  |                                            |   | For W1, must be drawn at 0, 20, 40 etc NOT 19.5 or 20.5 etc NO GAPS ALLOWED<br>Must have linear scale.<br>No inequality labels on their own such as $0 \le I < 20$ , $20 \le I < 40$ etc but allow if a clear horizontal linear scale is also given. |
|           | INCORRECT I<br>Frequency diago<br>MAXIMUM<br>Thus frequency<br>frequency/midp | DIAGRAMS<br>rams can get<br>density = fre<br>point etc gets | M0, A0, I<br>equency ×<br>MAX M0 | L0, W1, H0<br>width,<br>A0L0W1H0 |                                            |   | FT of heights <i>dep</i> on M1 all must agree with their fds<br>If fds not given and one height is wrong then max<br>M1A0L1W1H0<br>– visual check only (within one square) –no need to<br>measure precisely                                          |

| (ii)  | Mean = $\frac{10 \times 238 + 30 \times 365 + 50 \times 142 + 80 \times 128 + 150 \times 45}{918}$<br>= $\frac{37420}{918}$ = 40.8                                                                                                                                                                                                                                                    | M1 for midpoints<br>M1 for midpoints<br>×frequencies with<br>divisor 918<br>A1 CAO                                                                                                        | 3 | At least three midpoints correct for M1 (seen in (ii) or<br>in table in (i))<br>No marks if not using midpoints<br>Second M1 for sight of at least 3 double pairs seen out<br>of $10 \times 238 + 30 \times 365 + 50 \times 142 + 80 \times 128 + 150 \times$<br>45 with divisor 918<br>Numerator = $2380+10950+7100+10240+6750$<br>Use of LCB or UCB for midpoints here scores 0<br>For answer 40.76 or 40.8 or 41 mark as B3<br>37420/918 o.e. scores M1M1A0<br>NB Accept answers seen without working in part (ii)<br>or (iii) (from calculator)<br>Use of 'not quite right' midpoints such as 10.5, 30.5,<br>etc can get M0M1A0 here and SC3 in (iii)<br>Watch for incorrect method<br>238/10+365/30+142/50+128/80+45/150=40.71<br>Allow max 4 sf in final answer<br>Also accept £40760, £40800 etc |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (iii) | $\sum fx^2 = 238 \times 10^2 + 365 \times 30^2 + 142 \times 50^2 + 128 \times 80^2 + 45 \times 150^2$<br>= 2539000<br>Or 238 × 100 + 365 × 900 + 142 × 2500 + 128 × 6400 +<br>45 × 22500 = 2539000<br>Or 2380 × 10 + 10950 × 300 + 7100 × 50 + 10240 × 80 +<br>13500 × 150 = 2539000<br>$S_{xx} = 2539000 - \frac{37420^2}{918} = 1013666$<br>$s = \sqrt{\frac{1013666}{917}} = 33.2$ | M1 for at least 3<br>multiples $fx^2$<br>A1 for $\Sigma fx^2$<br>M1 for attempt at $S_{xx}$<br>Dep on first M1<br>BUT NOTE M1M0 if<br>their $S_{xx} < 0$<br>A1 CAO<br>If using LCB or UCB | 4 | For A1, all midpoints and frequencies correct<br>Or Sxx = 2539000 – 918 × 40.76 <sup>2</sup> = 1013855,<br>s=33.25. Using mean 40.8 leads to 1010861, s=<br>33.20, Using mean = 41 leads to Sxx = 995844 and s<br>= 32.95<br>M1M1 for $\sum f(x-xbar)^2$ M1 for first three terms, M1 for<br>all 5 terms<br>238 × (10-40.76) <sup>2</sup> + 365 × (30-40.76) <sup>2</sup> + 142 × (50-<br>40.76) <sup>2</sup> + 128 × (80-40.76) <sup>2</sup> + 45 × (150-40.76) <sup>2</sup> (=<br>1013666) A1 for S <sub>xx</sub> = 1013666 A1 for final answer                                                                                                                                                                                                                                                       |

|              |                                                                                                                                                                                                                                                                                                                   | consistently then allow<br>SC2 if working is fully<br>correct but SC0<br>otherwise but no marks<br>in part (ii)              |    | For answer 33.25 or 33.3 or 33.2 (www) can just mark<br>as B4 - these may be from calculator without working<br>Allow 33 with correct working<br>rmsd = $\sqrt{(1013666/918)}$ (=33.23) gets M1A1M1A0 (if<br>seen) <b>WATCH FOR DIVISOR OF 918</b><br>Allow max 4 sf in final answer<br>Allow £33200 etc                                                                                                                                                                                                                                                     |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (iv)         | $(\overline{x} - 2s = 40.76 - 2 \times 33.25 = -25.74)$<br>$\overline{x} + 2s = 40.76 + 2 \times 33.25 = 107.26$<br>Comment that there are almost certainly some outliers.<br>Appropriate comment such as<br>'No, since there is nothing to indicate that these high earners<br>represent a separate population.' | M1 for $\overline{x} + 2s$ or $\overline{x} - 2s$<br>A1 for 107.26 (FT)<br>E1<br>E1 Dep on upper limit<br>in range 106 - 108 | 4  | FT any positive mean and positive sd for M1<br>Only follow through numerical values, not variables<br>such as <i>s</i> , so if a candidate does not find <i>s</i> but then<br>writes here 'limit is $40.76+2 \times$ standard deviation',<br>do NOT award M1 (This rule of not following through<br>variables applies in all situations)<br>Award E0E0 if their upper limit > 200<br>Allow 'Must be some outliers'<br>Allow any comments that implies that there are<br>outliers<br>No marks in (iv) unless using $\overline{x} + 2s$ or $\overline{x} - 2s$ |
| ( <b>v</b> ) | New mean = $1.15 \times 40.76 = 46.87$<br>New variance = $1.15^2 \times 33.25^2 = 1462$<br>For misread 1.5 in place of 1.15<br>For $1.5 \times 40.76 = 61.1$<br>and $1.5^2 \times 33.25^2 = 2490$ allow SC2 if all present but SC0<br>otherwise                                                                   | B1 FT<br>M1A1 FT                                                                                                             | 3  | FT their mean (if given to $\ge 2$ s.f.)<br>FT their s (if given to $\ge 2$ s.f.) provided their s>0<br>If RMSD found in part (i) rather than s, then FT their<br>RMSD<br>For new SD = 38.24 found instead of variance give<br>M1A0 even if called variance (and FT their s)<br>M0A0 for 1.15 x 33.25 <sup>2</sup> = 1271<br>Allow max 4 sf in final answers Min 2 sf<br>If candidate 'starts again' only award marks for CAO                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                   | TOTAL                                                                                                                        | 19 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Q8<br>(i) | $E(X) = np = 12 \times 0.2 = 2.4$<br>Do not allow subsequent rounding.                                                                   | M1 for product<br>A1 CAO                                                                                             | 2 | If wrong <i>n</i> used consistently throughout, allow M marks only.<br>NB If they round to 2, even if they have obtained 2.4 first they get M1A0. For answer of '2.4 or 2 if rounded up' allow M1A0<br>Answer of 2 without working gets M0A0.<br>If they attempt $E(X)$ by summing products <i>xp</i> give no marks unless answer is fully correct.                                                                                                                                                                                                                                                             |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)      | X ~ B(12, 0.2)<br>(A) P(Wins exactly 2) = $\binom{12}{2} \times 0.2^2 \times 0.8^{10} = 0.2835$<br>OR from tables 0.5583-0.2749 = 0.2834 | M1 $0.2^2 \times 0.8^{10}$<br>M1 $\binom{12}{2} \times p^2 q^{10}$<br>A1 CAO<br>OR: M2 for 0.5583 –<br>0.2749 A1 CAO | 3 | With $p + q = 1$<br>Also for $66 \times 0.004295$<br>Allow answers within the range 0.283 to 0.284 with or<br>without working or 0.28 to 0.283 if working shown<br>See tables at the website<br>http://www.mei.org.uk/files/pdf/formula_book_mf2.pd<br>f                                                                                                                                                                                                                                                                                                                                                        |
|           | ( <b>B</b> ) P(Wins at least 2) = $1 - 0.2749 = 0.7251$                                                                                  | M1 P( <i>X</i> ≤1)<br>M1 1-P(X≤1)<br>A1 CAO                                                                          | 3 | M1 0.2749 seen<br>M1 1 – 0.2749 seen<br>Allow 0.725 to 0.73 but not 0.72.<br>Point probability method:<br>P(1) = $12 \times 0.2 \times 0.8^{11} = 0.2062$ , P(0) = $0.8^{12} = 0.0687$<br>So P(X≤1) = 0.2749 gets M1 then mark as per scheme<br>SC1 for 1 – P(X≤2) = 1 – 0.5583 = 0.4417<br>For misread of tables value of 0.2749, allow 0 in ( <i>A</i> )<br>but MAX M1M1 in ( <i>B</i> )<br>For P(X>1) = P(X=2) + P(X=3) + P(X=4) + allow<br>M1 for 0.2835+0.2362+0.1329+0.0532+0.0155 and<br>second M1 for 0.0033+0.0005+0.0001 and A1 for<br>0.725 or better<br>M0M0A0 for 1 – P(X=1) = 1 – 0.2062 = 0.7938 |

| (iii) | Let $n = \mathbf{probability}$ that Ali wins a game            | B1 for definition of <i>n</i> in  |   | Minimum needed for B1 is $p$ – probability that Ali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|----------------------------------------------------------------|-----------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (111) | H = probability that All whis a game                           | bi for definition of p in         |   | winning included for $\mathbf{D}$ is $p = probability that An$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | $n_0. p = 0.2$                                                 |                                   |   | $ \begin{array}{c} \text{WIIIS.} \\ \text{All} \\ \text{D}(\text{All} \ \ ) \\ \text{C} \\ \text{D}1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | $H_1: p > 0.2$                                                 | B1 for $H_0$                      |   | Allow $p = P(All wins)$ for B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | $H_1$ has this form as Ali claims that he is better at winning | B1 for $H_1$                      | Λ | Definition of p must include word probability (or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | games than Mark is.                                            | E1                                | - | chance or proportion or percentage or likelihood but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                |                                   |   | NOT possibility).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                |                                   |   | Preferably as a separate comment. However can be at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                                                                |                                   |   | end of $H_0$ as long as it is a clear definition ' $p$ = the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |                                                                |                                   |   | probability that Ali wins a game, NOT just a sentence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                                                                |                                   |   | 'probability is 0.2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                |                                   |   | $H_0$ : p(Ali wins) = 0.2, $H_1$ : p(Ali wins) > 0.2 gets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                |                                   |   | B0B1B1Allow p=20%, allow $\theta$ or $\pi$ and $\rho$ but not x.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                |                                   |   | However allow any single symbol if defined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | EITHER Probability method                                      |                                   |   | Allow $H_0 = p = 0.2$ , Allow $H_0 : p = \frac{2}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |                                                                | B1 for $P(X \ge 7)$               |   | Do not allow $H_0 : P(X=r) = 0.2$ $H_1 : P(X=r) > 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | P(X > 7) - 1 - P(X < 6)                                        | B1 for $0.0867$ Or $1 -$          |   | Do not allow $H_0: -0.2 -20\%$ P(0.2) $p(0.2)$ $p(r) -0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | -1 0.0133 - 0.0867 $> 5%$                                      | 0.0133 seen                       |   | r=0.2 (unless x correctly defined as a probability)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | = 1 - 0.9133 - 0.0007 > 370                                    | M1 for comparison with            |   | $\lambda = 0.2$ (unless $\lambda$ concerny defined as a probability)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                | 50/ dap on D1 for                 |   | Do not allow II $p \ge 0.2$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                                | 5% dep on B1 for                  |   | Do not allow $H_0$ and $H_1$ reversed for B marks but can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                |                                   |   | still get E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | So not significant, so there is not enough evidence to reject  | A1 for not significant or         |   | Allow NH and AH in place of $H_0$ and $H_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | the null hypothesis and we conclude that there is not enough   | 'accept $H_0$ ' or 'cannot        |   | For hypotheses given in words allow Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | evidence to suggest that Ali is better at winning games than   | reject $H_0$ ' or 'reject $H_1$ ' |   | B0B1B1E1 Hypotheses in words must include                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Mark.                                                          |                                   |   | probability (or chance or proportion or percentage) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | Must include 'not enough evidence' or something similar for    | E1 dep on M1A1                    |   | the figure 0.2 oe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | E1. 'Not enough evidence' can be seen in the either for the    |                                   | _ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | A mark or the E mark.                                          | Do not award first B1             | 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | Do not allow final conclusions for E1 such as : 'there is      | for poor symbolic                 |   | Zero for use of point prob - $P(X = 7) = 0.0546$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | evidence to suggest that Ali is no better at winning games     | notation such as $P(X =$          |   | $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$ |
|       | than Mark' or 'Mark and Ali have equal probabilities of        | (7) = 0.0867 This                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | winning games'                                                 | comment applies to all            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | Think Sunco                                                    | methods                           |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                                | memous                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                                |                                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                                |                                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|                                                               | B1 for 0.0867                      |    | Allow any form of statement of CR eg $X > 8$ , 8 to 20, 8 |
|---------------------------------------------------------------|------------------------------------|----|-----------------------------------------------------------|
| OR Critical region method:                                    | B1 for 0.0321                      |    | or above, $X > 8$ , $\{8,\}$ , annotated number line, etc |
| Let $X \sim B(20, 0.2)$                                       | M1 for at least one                |    | but not $P(X \ge 8)$                                      |
| $P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.9133 = 0.0867 > 5\%$     | comparison with 5%                 |    | {8,9,10,11,12} gets max B2M1A0 – tables stop at 8.        |
| $P(X \ge 8) = 1 - P(X \le 7) = 1 - 0.9679 = 0.0321 < 5\%$     | A1 CAO for critical                |    | NB USE OF POINT PROBABILITIES gets                        |
|                                                               | region and not                     |    | B0B0M0A0                                                  |
| So critical region is {8,9,10,11,12,13,14,15,16,17,18,19,20}  | significant or 'accept             |    | Use of complementary probabilities                        |
| 7 does not lie in the critical ragion, so not significant     | H <sub>0</sub> ' or 'cannot reject |    | Providing there is sight of 95%, allow B1 for 0.9133,     |
| 7 does not ne in the critical region, so not significant,     | $H_0$ ' or 'reject $H_1$ '         |    | B1 for 0.9679, M1 for comparison with 95% A1CAO           |
| So there is not anough avidence to reject the null hypothesis | dep on M1 and at least             |    | for correct CR                                            |
| so there is not enough evidence to reject the num hypothesis  | one B1                             |    | See additional notes below the scheme for other           |
| and we conclude that there is not chough evidence to suggest  |                                    |    | possibilities                                             |
| that An is better at winning games than wark.                 | E1 dep on M1A1                     |    | PLEASE CHECK THAT THERE IS NO EXTRA                       |
|                                                               | _                                  |    | WORKING ON THE SECOND PAGE IN THE                         |
|                                                               |                                    |    | ANSWER BOOKLET                                            |
|                                                               | TOTAL                              | 17 |                                                           |

# **NOTE RE OVER-SPECIFICATION OF ANSWERS**

If answers are grossly over-specified (see instruction 8), deduct the final answer mark in every case, except where there are more than two overspecified answers in a single question (only likely in question 7) in which case deduct a mark in only the first two cases of over-specification in that question. Probabilities should also be rounded to a sensible degree of accuracy.

## **ADDITIONAL NOTES RE Q8 PART iii**

# Use of n = 12

 $\overline{P(X \ge 7)} = 1 - P(X \le 6) = 1 - 0.9961 = 0.0039 < 5\%$ 

So significant or reject  $H_0$  etc, so there evidence to suggest that Ali is better at winning games than Mark.

Gets B1 for P( $X \ge 7$ ) B1 for 0.0039 M1 for comparison with 5% dep on B1 for 0.0039 A1 for significant E1 for evidence to suggest that Ali is better at winning games than Mark. Then award MR -1 so maximum of 4 possible

## **Comparison with 95% method**

B1 for  $P(X \le 6)$ B1 for 0.9133 M1 for comparison with 95% dep on B1 A1 for not significant or 'accept  $H_0$ ' or 'cannot reject  $H_0$ ' E1

Smallest critical region method:

Either:

Smallest critical region that 7 could fall into gets B1 and has size 0.0867 gets B1, This is > 5% gets M1, A1, E1 as per scheme NB These marks only awarded if 7 used, not other values.

Use of *k* method with no probabilities quoted:

P(X ≥ 7) = 1 – P(X ≤ 6) > 5% P(X ≥ 8) = 1 – P(X ≤ 7) < 5% These may be seen in terms of *k* or *n*. Either k = 8 or k - 1 = 7 so k = 8 gets SC1 so CR is {8,9,10,11,12,13,14,15, 16, 17, 18, 19, 20} gets another SC1 and conclusion gets another SC1

Use of *k* method with one probability quoted:

1 - 0.9679 < 5% or 0.0321 < 5% gets B0B1M1  $P(X \le k - 1) = P(X \le 7)$ so k - 1 = 7 so k = 8 (or just k = 8) so CR is {8,9,10,11,12,13,14,15, 16, 17, 18, 19, 20} and conclusion gets A1E1

Two tailed test with  $H_1: p \neq 0.2$ Hyp gets max B1B1B0E0  $P(X \ge 7) = 0.0867$  gets B1B1comparison with 2.5% gets M1 (must be 2.5%) Final marks A0E0

<u>Two tailed test done but with correct H<sub>1</sub>: p>0.2</u> Hyp gets max B1B1B1E1

#### 4766

#### **Mark Scheme**

<u>if compare with 5%</u> ignore work on lower tail and mark upper tail as per scheme so can score full marks <u>if compare with 2.5%</u> no marks B0B0M0A0E0

One tailed test with  $H_1: p < 0.2$ Hyp gets max B1B1B0E0 no further marks B0B0M0A0E0

Lower tailed test with  $H_1: p > 0.2$ Hyp gets max B1B1B0E0 no further marks B0B0M0A0E0

#### Line diagram method

B1 for squiggly line between 7 and 8 or on 8 exclusively (ie just one line), B1*dep* for arrow pointing to right, M1 0.0321 seen on diagram from squiggly line or from 8, A1E1 for correct conclusion

#### Bar chart method

B1 for line clearly on boundary between 7 and 8 or within 8 block exclusively (ie just one line),, B1*dep* for arrow pointing to right, M1 0.0321 seen on diagram from boundary line or from 8, A1E1 for correct conclusion

#### Using P(Not faulty) method

 $H_0: p=0.8$ ,  $H_1: p<0.8$ , where p represents the prob that Ali loses a game Ali claims that the proportion of games that he loses is less than 80% gets B1B1B1E1

 $P(X \le 13) = 0.0867 > 5\%$  So not significant, so there is not enough evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that Ali is better at winning games than Mark. Gets B1B1M1A1E1