

Mark Scheme (Results)

January 2012

GCE Core Mathematics C1 (6663) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code US030304
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$\frac{m \text{ satisfies}}{(x^2 + bx + c) = (x + p)(x + q)}, \text{ where } |pq| = |c| \text{ , leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a| \text{ , leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

January 2012 C1 6663 Mark Scheme

Question	Scheme	Marks
1.	$\frac{1}{4 \cdot 3 + 2 \cdot \frac{3}{2}}$	M1A1A1
(a)	$4x^{3} + 3x^{-\frac{1}{2}}$ $\frac{x^{5}}{5} + 4x^{\frac{3}{2}} + C$	(3)
(b)	5 3	M1A1A1
	$\frac{x}{5} + 4x^{2} + C$	(3)
		6 marks
	Notes	
(a)	3 -	
(a)	M1 for $x^n \to x^{n-1}$ i.e. x^3 or $x^{-\frac{1}{2}}$ seen	
	1 st A1 for $4x^3$ or $6 \times \frac{1}{2} \times x^{-\frac{1}{2}}$ (o.e.) (ignore any + c for this mark)	
	2^{nd} A1 for simplified terms i.e. both $4x^3$ and $3x^{-\frac{1}{2}}$ or $\frac{3}{\sqrt{x}}$ and no +c $\left[\frac{3}{1}x^{-\frac{1}{2}}\right]$ is]
	2 AT for simplified terms i.e. $\frac{\text{both}}{\text{both}} 4x = \frac{4x}{\text{and}} 3x^2 = \text{or } \frac{-x}{\sqrt{x}} = \frac{-x^2}{1}$	s Au
	Apply ISW here and award marks when first seen	_
(b)	M1 for $x^n \to x^{n+1}$ applied to y only so x^5 or $x^{\frac{3}{2}}$ seen.	
	Do not award for integrating their answer to part (a)	
	$1^{\text{st}} \text{ A1 for } \frac{x^5}{5} \text{ or } \frac{6x^{\frac{3}{2}}}{\frac{3}{2}} \text{ (or better). Allow } 1/5x^5 \text{ here but not for } 2^{\text{nd}} \text{ A1}$	
	2^{nd} A1 for fully correct and simplified answer with +C. Allow $(1/5)x^5$	
		4.0
	If $+ C$ appears earlier but not on a line where 2^{nd} A1 could be scored then	n AU

Question	Scheme	Marks
2. (a)	$\sqrt{32} = 4\sqrt{2} \text{ or } \sqrt{18} = 3\sqrt{2}$	B1
	$\left(\sqrt{32} + \sqrt{18} =\right) \underline{7\sqrt{2}}$	B1 (2)
	, , , , , , , , , , , , , , , , , , ,	
(b)	$\times \frac{3 - \sqrt{2}}{3 - \sqrt{2}} \underline{\text{or}} \times \frac{-3 + \sqrt{2}}{-3 + \sqrt{2}} \text{seen}$	M1
	$3-\sqrt{2}$ $\frac{4}{3}$ $\sqrt{3}+\sqrt{2}$	
	$\left[\frac{\sqrt{32} + \sqrt{18}}{3 + \sqrt{2}} \times \frac{3 - \sqrt{2}}{3 - \sqrt{2}} = \right] \frac{a\sqrt{2}(3 - \sqrt{2})}{[9 - 2]} \rightarrow \frac{3a\sqrt{2} - 2a}{[9 - 2]} \text{ (or better)}$	dM1
	$=$ $3\sqrt{2},-2$	A1, A1 (4)
AIT		3.54
ALT	$(b\sqrt{2}+c)(3+\sqrt{2}) = 7\sqrt{2}$ leading to: $3b+c=7$, $3c+2b=0$	M1
	e.g. $3(7-3b) + 2b = 0$ (o.e.)	dM1
		6 marks
	Notes	
(a)	1 st B1 for either surd simplified	
	2^{nd} B1 for $7\sqrt{2}$ or accept $a = 7$. Answer only scores B1B1	
	NB Common error is $\sqrt{32} + \sqrt{18} = \sqrt{50} = 5\sqrt{2}$ this scores B0B0 but can use their	r "5" in (b) to
	get M1M1	
(b)	1 st M1 for an attempt to multiply by $\frac{3-\sqrt{2}}{3-\sqrt{2}}$ (o.e.) Allow poor use of brackets	
	2^{nd} dM1 for using $a\sqrt{2}$ to correctly obtain a numerator of the form $p+q\sqrt{2}$ who	ere p and q are
	non-zero integers. Allow arithmetic slips e.g. $21\sqrt{2} - 28$ or $3\sqrt{2} \times \sqrt{2}$	
	Follow through their $a = 7$ or a new value found in (b). Ignore denomined the second of letter $a = 7$ or a new value found in (b).	nator.
	Allow use of letter a. Dependent on 1 st M1 So $3\sqrt{32} - \sqrt{64} + 3\sqrt{8} - \sqrt{36}$ is M0 until they reduce $p + q\sqrt{2}$	
	_	
	$1^{\text{st}} \text{ A}1$ for $3\sqrt{2}$ or accept $b=3$ from correct working $2^{\text{nd}} \text{ A}1$ for -2 or accept $c=-2$ from correct working	
ALT	Simultaneous Equations	
	1 st M1 for $(b\sqrt{2}+c)(3+\sqrt{2}) = 7\sqrt{2}$ and forming 2 simultaneous equations.	Ft their $a = 7$
	2 nd dM1 for solving their simultaneous equations: reducing to a linear equation	

Quest	tion	Scheme	Marks
3.	(a)	5x > 20	M1
		$\underline{x > 4}$	A1 (2)
	(b)	$x^2 - 4x - 12 = 0$	
		(x+2)(x-6)[=0]	M1
		r = 6 - 2	A1
		x = 0, 2 $x < -2 , x > 6$	M1, A1ft
			(4)
			(l
		Notes	6 marks
	(a)	M1 for reducing to the form $px > q$ with one of p or q correct	
	(a)	Using $px = q$ is M0 unless > appears later on	
		A1 $x > 4$ only	
		THE WALL ONLY	
	(b)	1^{st} M1 for multiplying out and attempting to solve a 3TQ with at least $\pm 4x$ or	<u>+</u> 12
		See General Principles for definitions of "attempt to solve"	
		1^{st} A1 for 6 and -2 seen. Allow $x > 6$, $x > -2$ etc to score this mark.	
		Values may be on a sketch.	
		2 nd M1 for choosing the "outside region" for their critical values. Do not awar	d simply for a
		diagram or table – they must have chosen their "outside" regions	
		2 nd A1ft follow through their 2 distinct critical values. Allow "," "or" or a "blar	nk" between
		answers. Use of "and" is M1A0 i.e. loses the final A1	
		-2 > x > 6 scores M1A0 i.e. loses the final A1 but apply ISW if $x > 6$, $x < -$	2 has been seen
		Accept $(-\infty, -2) \cup (6, \infty)$ (o.e)	
		Use of \leq instead of $<$ (or \geq instead of $>$) loses the final A mark in (b) un lost in (a) for $x \geq 4$ in which case allow it here.	lless A mark was

Question	Scheme	Marks
4. (a)	$(x_2 =) a + 5$	B1 (1)
(b)	$(x_2 =) a + 5$ $(x_3) = a''(a+5)''+5$ $= a^2 + 5a + 5$ (*)	M1 A1cso (2
	$41 = a^2 + 5a + 5 \implies a^2 + 5a - 36 = 0$ or $36 = a^2 + 5a$	M1
	(a+9)(a-4) = 0 a = 4 or -9	M1 A1 (3)
	u = 401 - 9	6 marks
	Notes	
(a)	B1 accept $a1 + 5$ or $1 \times a + 5$ (etc)	
(b)	M1 must see $a(\text{their } x_2) + 5$ A1cso must have seen $a(a[1] + 5) + 5$ (etc or better) Must have both brackets incorrect working seen	s () and no
(c)	1 st M1 for forming a suitable equation using x_3 and 41 and an attempt to collect reduce to 3TQ (o.e). Allow one error in sign. Accept for example a^2 . If completing the square should get to $\left(a \pm \frac{5}{2}\right)^2 = 36 + \frac{25}{4}$ 2 nd M1 Attempting to solve their relevant 3TQ (see General Principles) A1 for both 4 and -9 seen. If $a = 4$ and -9 is followed by -9 < a < 4 apply No working or trial and improvement leading to both answers scores 3/3 for only one answer. Allow use of other letters instead of a	+5a + 46 (= 0) ly ISW.

Question	Scheme	Marks
5. (a)	$x(5-x) = \frac{1}{2}(5x+4)$ (o.e.)	M1
	$2x^2 - 5x + 4 = 0$ (o.e.) e.g. $x^2 - 2.5x + 2 = 0$	A1
	$b^2 - 4ac = (-5)^2 - 4 \times 2 \times 4$	M1
	= 25 - 32 < 0, so no roots <u>or</u> no intersections <u>or</u> no solutions	A1 (4)
(b)	Curve: \cap shape and passing through $(0, 0)$ \cap shape and passing through $(5, 0)$	B1 B1
	Line: +ve gradient and no intersections with C. If no C drawn score B0	B1
	Line passing through $(0, 2)$ and $(-0.8, 0)$ marked on axes	B1 (4)
		8 marks
	Notes	
(a)	1 st M1 for forming a suitable equation in one variable	
	1 st A1 for a correct 3TQ equation. Allow missing "= 0" Accept $2x^2 + 4 = 5x$	etc
	2^{nd} M1 for an attempt to evaluate discriminant for their 3TQ. Allow for $b^2 > 4a$	$c \text{ or } b^2 < 4ac$
	_	
	Allow if it is part of a solution using the formula e.g. $(x=)\frac{5\pm\sqrt{25-32}}{4}$	
	Correct formula quoted and some correct substitution or a correct expre	ssion
	False factorising is M0	551011
	2^{nd} A1 for correct evaluation of discriminant for a correct 3TQ e.g. 25 – 32 (or	hetter) and a
	comment indicating no roots or equivalent. For contradictory statement	
ALT	2^{nd} M1 for attempt at completing the square $a \left[\left(x \pm \frac{b}{2a} \right)^2 - q \right] + c$	
	$2^{\text{nd}} \text{ A1} \text{for} \left(x - \frac{5}{4}\right)^2 = -\frac{7}{16} \text{and a suitable comment}$	
(b)	Coordinates must be seen on the diagram. Do not award if only in the bod	v of the script
(6)	"Passing through" means <u>not</u> stopping at and <u>not</u> touching.	y of the script.
	Allow $(0, x)$ and $(y, 0)$ if marked on the correct places on the correct	et axis.
	1 st B1 for correct shape and passing through origin. Can be assumed if it passe	
	intersection of axes	_
	2 nd B1 for correct shape and 5 marked on x-axis	
SC	for \cap shape stopping at <u>both</u> (5, 0) <u>and</u> (0, 0) award B0B1	
	3 rd B1 for a line of positive gradient that (if extended) has no intersection with t	heir C (possibly
	extended). Must have both graphs on same axes for this mark. If no C gi	ven score B0
	4^{th} B1 for straight line passing through -0.8 on x-axis and 2 on y-axis	
	Accept exact fraction equivalents to -0.8 or $2(e.g. \frac{4}{2})$	

Question	Scheme	Marks
6. (a)	$(m=)\frac{2}{3}$ (or exact equivalent)	B1 (1)
(b)	B: (0, 4) [award when first seen – may be in (c)]	B1
	Gradient: $\frac{-1}{m} = -\frac{3}{2}$	M1
	$y-4 = -\frac{3x}{2}$ or equiv. e.g. $\left(y = -\frac{3x}{2} + 4, 3x + 2y - 8 = 0\right)$	A1 (3)
(c)	A: $(-6,0)$ [award when first seen – may be in (b)]	B1
	A: $(-6,0)$ [award when first seen – may be in (b)] C: $\frac{3x}{2} = 4 \implies x = \frac{8}{3}$ [award when first seen – may be in (b)]	B1ft
	Area: Using $\frac{1}{2}(x_C - x_A)y_B$	M1
	$= \frac{1}{2} \left(\frac{8}{3} + 6 \right) 4 = \frac{52}{3} \left(= 17 \frac{1}{3} \right)$	A1 cso (4)
ALT	$BC = \frac{4}{6}\sqrt{52}$ (from similar triangles) (or possibly using C)	2 nd B1ft
	Area: Using $\frac{1}{2}(AB \times BC)$ N.B. $AB = \sqrt{6^2 + 4^2} = \sqrt{52}$	M1
	$=\frac{1}{2} \times \sqrt{52} \times \left(\frac{2}{3}\sqrt{52}\right) = \frac{52}{3} \left(=17\frac{1}{3}\right)$	A1
		8 marks
	Notes	
(a)	B1 for $\frac{2}{3}$ seen. Do not award for $\frac{2}{3}x$ and must be in part (a)	
(b)	for coordinates of <i>B</i> . Accept 4 marked on <i>y</i> -axis (clearly labelled) M1 for use of perpendicular gradient rule. Follow through their value for <i>m</i> A1 for a correct equation (any form, need not be simplified). Answer only 3/3	3
(c)	1 st B1 for the coordinates of <i>A</i> (clearly labelled). Accept – 6 marked on <i>x</i> -ax 2^{nd} B1ft for the coordinates of <i>C</i> (clearly labelled) or $AC = \frac{26}{3}$.	is
	Accept $x = \frac{8}{3}$ marked on x-axis. Follow through from l_2 if >0	
	M1 for an expression for the area of the triangle (all lengths > 0). Ft their	4, - 6 and $\frac{8}{3}$
	A1 cso for $\frac{52}{3}$ or exact equivalent seen but must be a single fraction or $17\frac{1}{3}$	or $17\frac{2}{6}$ etc
	$17\frac{1}{3}$ on its own can only score full marks if A, B and C are all correct.	
ALT	2^{nd} B1ft If they use this approach award this mark for C (if seen) or BC	
Use of Det	2 nd M1 must get as far as: $\frac{1}{2} x_A \times y_B - x_C \times y_B $	

Question	Scheme	Marks
7.	$\left[f(x) = \right] \frac{3x^3}{3} - \frac{3x^2}{2} + 5x[+c] \qquad \underline{\text{or}} \left\{ x^3 - \frac{3}{2}x^2 + 5x(+c) \right\}$	M1A1
	10 = 8 - 6 + 10 + c	M1
	c = -2	A1
	$c = -2$ $f(1) = 1 - \frac{3}{2} + 5 "-2" = \frac{5}{2} \text{(o.e.)}$	A1ft (5)
		5 marks
	Notes	
	1^{st} M1 for attempt to integrate $x^n \to x^{n+1}$	
	1^{st} A1 all correct, possibly unsimplified. Ignore +c here.	
	2^{nd} M1 for using $x = 2$ and $f(2) = 10$ to form a linear equation in c. Allow sign	gn errors.
	They should be substituting into a <u>changed</u> expression	
	2^{nd} A1 for $c = -2$	
	3^{rd} A1ft for $\frac{9}{2} + c$ Follow through their <u>numerical</u> $c \neq 0$	
	This mark is dependent on 1 st M1 and 1 st A1 only.	

Questio	Scheme	Marks
8. ([$y = x^3 + 2x^2$] so $\frac{dy}{dx} = 3x^2 + 4x$	M1A1 (2)
(Shape \nearrow Touching x-axis at origin Through and not touching or stopping at -2 on x -axis. Ignore extra intersections.	B1 B1 B1 (3)
(At $x = -2$: $\frac{dy}{dx} = 3(-2)^2 + 4(-2) = 4$	M1
	At $x = 0$: $\frac{dy}{dx} = 0$ (Both values correct)	A1 (2)
(Horizontal translation (touches x-axis still) $k-2$ and k marked on positive x-axis $k^2(2-k)$ (o.e) marked on negative y-axis	M1 B1 B1
		10 marks
	Notes	
Prod Ru	Do not award for $2x(x+2)$ or $2x(1+2)$ etc	
(1 st B1 for correct shape (anywhere). Must have 2 clear turning points. 2 nd B1 for graph touching at origin (not crossing or ending) 3 rd B1 for graph passing through (not stopping or touching at) -2 on x axis and axis	-2 marked on
S		
(M1 for attempt at $y'(0)$ or $y'(-2)$. Follow through their 0 or -2 and their $y'(x)$ for a <u>correct</u> statement of zero gradient for an identified point on their curve that axis A1 for both correct answers	, <u>—</u>
(For the M1 in part (d) ignore any coordinates marked – just mark the solution of their (b). Should still touch x – axis if it of the marked of their (b). Should still touch x – axis if it of the marked of their (c). Should still touch x – axis if it of the marked of the marked – just mark the solution of their (b). Should still touch x – axis if it of the marked – just mark the solution of their (b). Should still touch x – axis if it of the marked – just mark the solution of their (b). Should still touch x – axis if it of the marked – just mark the solution of their (b). Should still touch x – axis if it of the marked – just mark the solution of their (b). Should still touch x – axis if it of the marked – just mark the solution of their (b). Should still touch x – axis if it of the marked – just mark the solution of their (b). Should still touch x – axis if it of the marked – just mark the solution of their (b). Should still touch x – axis if it of the marked – just mark the solution of their (b). Should still touch x – axis if it of the marked – just mark the solution of their (b). Should still touch x – axis if it of the marked – just mark the solution of their (b). Should still touch x – axis if it of the marked – just marke	did in (b) on +ve x-axis d touch at k

Question	Scheme	Marks
9. (a)	$S_{10} = \frac{10}{2} [2P + 9 \times 2T]$ or $\frac{10}{2} (P + [P + 18T])$	M1
	e.g. $5[2P+18T]$ = $(\pounds) (10P+90T)$ or $(\pounds) 10P+90T$ (*)	A1cso (2)
(b)	Scheme 2: $S_{10} = \frac{10}{2} [2(P+1800)+9T] = \{10P+18000+45T\}$	M1A1
	10P + 90T = 10P + 18000 + 45T	M1
	90T = 18000 + 45T $T = 400 (only)$	A1 (4)
(c)	Scheme 2, Year 10 salary: $[a+(n-1)d=](P+1800)+9T$	B1ft
	P + 1800 + "3600" = 29850	M1
	$P = (\pounds) \ \underline{24450}$	A1 (3)
		9 marks
	Notes) IIIII II
(a)	M1 for identifying $a = P$ or $d = 2T$ and attempt at S_{10} . Using $n = 10$ and on	e of a or d
List	 A1cso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T M1A1 for a full list seen (with + signs or written in columns) and no incorrect v Any missing terms is M0A0 	vorking seen.
(b)	1 st M1 for attempting S_{10} for scheme 2 (allow missing () brackets e.g. 2P Using $n = 10$ and at least one of a or d correct.	
List	1 st A1 for a correct expression for S_{10} using scheme 2 (needn't be multiplied out) Allow M1A1 if they reach $10P + 18000 + 45T$ with no incorrect working seen $10P + 18000 + 45T$ with no working is M1A1	
	2^{nd} M1 for forming an equation using the two sums that would enable P to b Follow through their expressions provided P would disappear.	e eliminated.
	2^{nd} A1 for $T = 400$ Answer only (4/4)	
(c)	B1 for using u_{10} for scheme 2. Can be 9T or follow through their value of	f <i>T</i>
	M1 for forming an equation based on u_{10} for scheme 2 and using 29850 and	d their value of
	A1 for 24450 seen Answer only (3/3)	
MR	If they misread scheme 2 as scheme 1 in part (c) apply MR rule and award B0M1A0 max for an equation based on u_{10} for scheme 1 and using 29850 and their <u>value</u> of T	

Question	Scheme	Marks
10. (a)	$\left(rac{1}{2},0 ight)$	B1 (1)
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-2}$	M1A1
A	At $x = \frac{1}{2}$, $\frac{dy}{dx} = \left(\frac{1}{2}\right)^{-2} = 4$ (= m)	A1
	Gradient of normal $=-\frac{1}{m}$ $\left(=-\frac{1}{4}\right)$	M1
F	Equation of normal: $y - 0 = -\frac{1}{4} \left(x - \frac{1}{2} \right)$	M1
(c)	2x + 8y - 1 = 0 (*)	A1cso (6)
	$2 - \frac{1}{x} = -\frac{1}{4}x + \frac{1}{8}$	M1
	$[=2x^2+15x-8=0]$ or $[8y^2-17y=0]$	
	(2x-1)(x+8) = 0 leading to $x =$	M1
	$x = \left[\frac{1}{2}\right] \text{ or } -8$	A1
	$y = \frac{17}{8}$ (or exact equivalent)	A1ft (4)
	8	11 marks
	Notes	
(a) I	B1 accept $x = \frac{1}{2}$ if evidence that $y = 0$ has been used. Can be written on g	raph. Use ISW
(b) 1	1 st M1 for kx^{-2} even if the '2' is not differentiated to zero. If no evidence of the series	ence of $\frac{dy}{dx}$
	1^{st}A1 for x^{-2} (o.e.) only seen then $0^{\text{ond}} + 1 = 0$	0/6
	for using $x = 0.5$ to get $m = 4$ (correctly) (or $m = 1/0.25$) To score final A1cso must see at least one intermediate equation for the line	after $m=4$
	2^{nd} M1 for using the perpendicular gradient rule on their m coming from their	
		$\frac{1}{dx}$
	Their m must be a value not a letter. for using a changed gradient (based on y') and their A to find equation	on of line
	3 rd A1cso for reaching printed answer with no incorrect working seen.	
(a)	Accept $2x + 8y = 1$ or equivalent equations with $\pm 2x$ and $\pm 8y$ Trial and improvement requires sight of first equation.	
(c)	1 st M1 for attempt to form a suitable equation in one variable. Do not penalise poor	use of brackets
	etc.	
	2^{nd} M1 for simplifying their equation to a 3TQ and attempting to solve. May \Rightarrow by $x = -8$	be
	1 st A1 for $x = -8$ (ignore a second value). If found y first allow ft for x if x	< 0
2	2^{nd} A1ft for $y = \frac{17}{8}$ Follow through their x value in line or curve provided ans	wer is > 0
	This second A1 is dependent on <u>both</u> M marks	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code US030304 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

