

Mark Scheme (Results)

January 2013

GCE Core Mathematics C2 (6664/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an

Pearson: helping people progress, everywhere

Edexcel username and password to access this service.

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code US034362 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Unless indicated in the mark scheme a correct answer with no working should gain full marks for that part of the question.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used.

- bod benefit of doubt
- ft follow through
- the symbol will be ψsed for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

	0	1
aM		•
aA	•	
bM1		•
bA1	•	
bB	•	
bM2		٠
bA2		•

January 2013 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme		Marks
1.	$(2-5x)^6$		
	$(2^6 =) 64$	Award this when first seen (not $64x^0$)	B1
	+ 6×(2) ⁵ (-5x) + $\frac{6 \times 5}{2}$ (2) ⁴ (-5x) ²	Attempt binomial expansion with correct structure for at least one of these terms. E.g. a term of the form: $\binom{6}{p} \times (2)^{6-p} (-5x)^p$ with $p = 1$ or $p = 2$ consistently. Condone sign errors. Condone missing brackets if later work implies correct structure and allow alternative forms for binomial coefficients e.g. ${}^{6}C_{1}$ or $\binom{6}{1}$ or even $\left(\frac{6}{1}\right)$	M1
	-960x	Not $+-960x$	A1 (first)
	$(+)6000x^2$		A1 (Second)
			(4)
Way 2	64(1±)	64 and $(1 \pm \dots - Award when first seen.$	B1
	$\left(1 - \frac{5x}{2}\right)^{6} = 1 - \frac{6 \times 5x}{2} + \frac{6 \times 5}{2} \left(-\frac{5x}{2}\right)^{2}$	Correct structure for at least one of the	M1
	-960x	Not $+-960x$	A1
	$(+)6000x^2$		A1
			(4)

Question Number	Ncheme		Marks
2. (a)	f(1) = a + b - 4 - 3 = 0 or $a + b - 7 = 0$	Attempt f(±1)	M1
(a)	a + b = 7 *	Must be $f(1)$ and $= 0$ needs to be seen	A1
			(2)
(b)	$f(-2) = a(-2)^{3} + b(-2)^{2} - 4(-2) - 3 = 9$	Attempt $f(\pm 2)$ and uses $f(\pm 2) = 9$	M1
	-8a + 4b + 8 - 3 = 9	Correct equation with exponents of (-2) removed	A1
	(-8a + 4b = 4)		
	Solves the given equation from part (a) and their equation in <i>a</i> and <i>b</i> from part (b) as far as $a =$ or $b =$		M1
	a = 2 and $b = 5$	Both correct	A1
		· ·	
			(4)
	Long Divis	gion	[6]
	$(ax^3 + bx^2 - 4x - 3) \div (x - 4x - 3)$		
		,	
(a)	where p and q are in terms of a or b or both		M1
	and sets their remainder =		
	NB Quotient = $ax^2 + (a+b)x + (a+b-4)$		
	a + b = 7	*	A1 (2)
	$(\pi r^3 + hr^2 - 4r - 2) \cdot (r + 1)$	$2) - a r^2 + r r + a$	(2)
	$\left(ax^3+bx^2-4x-3\right)\div\left(x+bx^2-4x-3\right)$		
(b)	where p and q are in terms o		M1
	and sets their remainder $= 9$		
	NB Quotient = $ax^2 + (b-2)$	2a)x + (4a - 4 - 2b)	
	4b - 8a + 5		A1
	Follow scheme for	final 2 marks	

3.				
(a)	$120000 \times (1.05)^3 = 138915 *$	Or $120000 \times 1.05 \times 1.05 \times 1.05 = 138915$ Or $120000, 126000, 132300, 138915$ Or $a = 120000$ and $a \times (1.05)^3 = 138915$	B1	
				(1)
(b)	$120000 \times (1.05)^{n-1} > 200000$	Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc.	M1	
	$\log 1.05^{n-1} > \log\left(\frac{5}{3}\right)$	Takes logs correctly Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc.	M1	
	$(n-1>)\frac{\log\left(\frac{5}{3}\right)}{\log 1.05} \text{ or equivalent}$ e.g $(n>)\frac{\log\left(\frac{7}{4}\right)}{\log 1.05}$	Allow <i>n</i> or $n - 1$ and ">", "<", or "=" etc. Allow 1.6 or awrt 1.67 for 5/3.	A1	
	2024	M1: Identifies a calendar year using their value of n or $n - 1$	M1A1	
		A1: 2024		
				(5)
	$a(1-r^n)$ 120000 $(1-1.05^{11})$	M1: Correct sum formula with $n = 10, 11$ or 12		
(c)	$\frac{a(1-r^n)}{1-r} = \frac{120000(1-1.05^{11})}{1-1.05}$	A1: Correct numerical expression with $n = 11$	M1 A1	
	1704814	Cao (Allow 1704814.00)	A1	
				(3)
				[9]
	0	or trial/improvement in (b)		
	Attempt to find at least the 10 th or 1	$U_{11} = 195\ 467.36$, $U_{12} = 205\ 240.72$ 1 th or 12 th terms correctly using a common ratio of 1.05 e terms need not be listed)	M1	
		gression correctly to reach a term $> 200\ 000$	M1	
		wrt 195 500 and a "12 th " term of awrt 205 200	A1	
	Uses their numbe	er of terms to identify a calendar year	M1	
		2024	A1	
				(5)

4.			
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1
	$3x - 10 = \alpha \Longrightarrow x = \frac{\alpha + 10}{3}$	Uses their α to find x. Allow $x = \frac{\alpha \pm 10}{3} \operatorname{not} \frac{\alpha}{3} \pm 10$	M1
	x = 41.2	Awrt	A1
	$(3x-10=)360-\alpha$ (246.4)	$360 - \alpha$ (can be implied by 246.4)	M1
	x = 85.5	Awrt	A1
	$(3x-10=)360+\alpha$ (=473.57)	$360 + \alpha$ (Can be implied by 473.57)	M1
	x = 161.2	Awrt	A1
			_

5.			
(a)			
(i)	The centre is at (10, 12)	B1: $x = 10$ B1: $y = 12$	B1 B1
(ii)	Uses $(x-10)^2 + (y-12)^2 =$		M1
	Completes the square for both $(x \pm "10")^2 \pm a$ and $(y \pm "12")^2$ Allow errors in obtaining their	$^{2} \pm b$ and $+195 = 0, (a, b \neq 0)$	
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for <i>r</i> including the square root and can implied by a correct value for <i>r</i>	A1
	<i>r</i> = 7	Not $r = \pm 7$ unless – 7 is rejected	A1
			(5)
	Compares the given equation with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write	B1: $x = 10$	B1B1
(a) Way 2	down centre $(-g, -f)$ i.e. (10, 12)	B1: $y = 12$	
Way 2	Uses $r = \sqrt{(\pm "10")^2 + (\pm "12")^2 - c}$		M1
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for r	A1
	r = 7	-	A1
			(5)
(b)	$MN = \sqrt{(25 - "10")^2 + (32 - "12")^2}$	Correct use of Pythagoras	M1
	$MN\left(=\sqrt{625}\right)=25$		A1
			(2)
(c)	$NP = \sqrt{("25"^2 - "7"^2)}$	$NP = \sqrt{(MN^2 - r^2)}$	M1
	$NP\left(=\sqrt{576}\right)=24$		A1
			(2)
(c) Way 2	$\cos(NMP) = \frac{7}{"25"} \Rightarrow NP = "25"\sin(N)$	(MP) Correct strategy for finding NP	M1
	<i>NP</i> = 24		A1
			(2)
			[9]

6.			
(a)	$2\log(x+15) = \log(x+15)^2$		B1
	$\log(x+15)^2 - \log x = \log \frac{(x+15)^2}{x}$	Correct use of $\log a - \log b = \log \frac{a}{b}$	M1
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\log_2 \frac{(x+15)^2}{x} = 6 \Longrightarrow \frac{(x+15)^2}{x} = 64$	Removes logs correctly	M1
	$\Rightarrow x^{2} + 30x + 225 = 64x$ or x + 30 + 225x ⁻¹ = 64	Must see expansion of $(x+15)^2$ to score the final mark.	
	$\therefore x^2 - 34x + 225 = 0 *$		A1
			(5)
(b)	$(x-25)(x-9) = 0 \Rightarrow x = 25 \text{ or } x = 9$	M1: Correct attempt to solve the given quadratic as far as $x =$ A1: Both 25 and 9	M1 A1
			(2)
			[7]

7.			
(a)	$9^2 = 4^2 + 6^2 - 2 \times 4 \times 6 \cos \alpha \Longrightarrow \cos \alpha = \dots$	$\begin{array}{c} \text{Correct use of cosine rule} \\ \text{leading to a value for } \cos \alpha \end{array}$	M1
	$\cos \alpha = \frac{4^2 + 6^2 - 9^2}{2 \times 4 \times 6} \left(= -\frac{29}{48} = -0.604\right)$		
	$\alpha = 2.22 *$	Cso (2.22 must be seen here)	A1
	$(NB \ \alpha = 2.219516005)$		(2)
(a) Way 2	$XY^{2} = 4^{2} + 6^{2} - 2 \times 4 \times 6\cos 2.22 \Longrightarrow XY$	$^{2} =$ Correct use of cosine rule leading to a value for XY^{2}	M1
	$XY^2 = 81.01$		
	<i>XY</i> = 9.00		A1
			(2)
(b)	$2\pi - 2.22 (= 4.06366)$	$2\pi - 2.22$ or awrt 4.06	B1
	$\frac{1}{2} \times 4^2 \times "4.06"$	Correct method for major sector area.	M1
	32.5	Awrt 32.5	A1
(h) War?	Cincle Min		(3)
(b) Way2	$\mathbf{Circle} - \mathbf{Min}$	Correct expression for circle area	B1
	<i>π</i> ×4	Correct method for	DI
	$\frac{\pi \times 4^2}{\pi \times 4^2 - \frac{1}{2} \times 4^2 \times 2.22 = 32.5}$	circle - minor sector area	M1
	= 32.5	Awrt 32.5	A1
	A man of the second sec		(3)
(c)	Area of triangle = $\frac{1}{2} \times 4 \times 6 \times \sin 2.22 (= 9.56)$	Correct expression for the area of triangle XYZ	B1
	So area required = " 9.56" + "32.5"	Their Triangle XYZ + (part (b) answer or correct attempt at major sector)	M1
	$= 42.1 \text{ cm}^2 \text{ or } 42.0 \text{ cm}^2$	Awrt 42.1 or 42.0 (Or just 42)	A1
			(3)
	Arc length = $4 \times 4.06 (= 16.24)$	M1: $4 \times their(2\pi - 2.22)$	N(1 A 1 C
(d)	Or $8\pi - 4 \times 2.22$	Or circumference – minor arc	M1A1ft
		A1: Correct ft expression	
	Perimeter = $ZY + WY + Arc Length$	9 + 2 + Any Arc	M1
	Perimeter = 27.2 or 27.3	Awrt 27.2 or awrt 27.3	A1
			(4)
			[12]

8.	y = 6	$-3x-\frac{4}{x^3}$		
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3 + \frac{12}{x^4}or - 3 + 12x^{-4}$	M1: $x^n \to x^{n-1}$ $(x \to x^0 \text{ or } x^{-3} \to x^{-4} \text{ or } 6 \to 0)$ A1: Correct derivative	M1 A1	
	$\frac{dy}{dx} = 0 \Longrightarrow -3 + \frac{12}{x^4} = 0 \Longrightarrow x = \dots \text{ or}$ $\frac{dy}{dx} = -3 + \frac{12}{\sqrt{2}^4}$	y' = 0 and attempt to solve for x May be implied by $\frac{dy}{dx} = -3 + \frac{12}{x^4} = 0 \Rightarrow \frac{12}{x^4} = 3 \Rightarrow x =$ or Substitutes $x = \sqrt{2}$ into their y'	M1	
	So $x^4 = 4$ and $x = \sqrt{2}$ or $\frac{dy}{dx} = -3 + \frac{12}{(\sqrt{2})^4}$ or $-3 + 12(\sqrt{2})^{-4} = 0$	Correct completion to answer with no errors by solving their $y' = 0$ or substituting $x = \sqrt{2}$ into their y'	A1	
		A	(4)	.)
(b)	$x = -\sqrt{2}$	Awrt -1.41	B1 (1))
(c)	$\frac{d^2 y}{dx^2} = \frac{-48}{x^5} \text{ or } -48x^{-5}$	Follow through their first derivative from part (a)	B1ft	<u> </u>
(d)	An appreciation that either $y'' > 0 \Rightarrow$ a minimum or $y'' < 0 \Rightarrow$ a maximum		(1) B1)
	Maximum at P as $y'' < 0$	Cso	B1	
	Need a fully correct solution for this man	k. y'' need not be evaluated but must be		
		or to $\sqrt{2}$ and negative or < 0 and maximum. ory statements (NB allow y'' = awrt-8 or -9)		
	Minimum at Q as $y'' > 0$	Cso	B1	
		k. y'' need not be evaluated but must be d there must be reference to P or to $-\sqrt{2}$ must be no incorrect or contradictory		
			(3)	
	Other methods for identifying the nature of t	he turning points are acceptable. The first B1 is	[9]]
	for finding values of y or dy/dx either side of B1's for fully correct solutions to identify the	$\sqrt{2}$ or their x at Q and the second and third		

9.	y = 27 - 2x	$x-9\sqrt{x}-\frac{16}{x^2}$		
(a)	6.272 , 3.634	X		B1, B1
				(2)
(b)	$\frac{1}{2} \times \frac{1}{2}$ or $\frac{1}{4}$			B1
	$\dots \{(0+0) + 2(5.866 + "6.272" + 5.210)\}$	+"3.634"+1.856)}	Need {} or implied later for A1ft	M1A1ft
	$\frac{1}{2} \times 0.5 \{(0+0) + 2(5.866 + "6$.272"+ 5.210 + "3.63	4"+1.856)}	
	$=\frac{1}{4}\times$	45.676		
	= 11.42	cao		A1
				(4)
		M1: $x^n \rightarrow x^{n+1}$ on any term A1: $27x - x^2$ A1: $-6x^{\frac{3}{2}}$ A1: $+16x^{-1}$		-
	$\int y dx = 27x - x^2 - 6x^{\frac{3}{2}} + 16x^{-1} (+c)$			M1A1A1A1
(a)				
(c)	$(-(-)^2 + (-)^2 + (-)^3 + (-)^{-1})$			
	$(27(4)-(4)^{2}-6(4)^{2}+16(4)^{2})$	Attempt to subtra	•	dM1
	$ \begin{pmatrix} 27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1} \\ - (27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1} \end{pmatrix} $	round using the limits 4 and 1. Dependent on the previous M1		GIVII
	· · · · · · · · · · · · · · · · · · ·	8-36)		A 1
	12	Cao		A1
				(6)
				[12]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code US034362 January 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

632)

Rewarding Learning