	uesti	Answer					Marks		Guidance
1	(i)	Positive					$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	CAO	
1	(ii)	Mean =5.064 allow 5.1 with working $126.6 / 25$ or 5.06 without SD $=1.324$ allow 1.3 with working or 1.32 without					B1 B2 [3]	Allow B1 for RMSD = 1.297 or var $=1.753$ or MSD $=1.683$	Also allow B1 for Sxx $=42.08$ or for $\Sigma x^{2}=683$ SC1 for both mean $=50.64$ and $\mathrm{SD}=$ 13.24 (even if over-specified)
1	(iii)	$\bar{x}-2 s=5$ $\bar{x}+2 s=5$ So there is	-	$24=$			B1FT M1 A1FT E1 [4]	FT their mean and sd for $\bar{X}+2 s$ but withhold final E mark if their limits mean that there are no outliers. For upper limit Incorrect statement such as 7.6 and 8.1 are outliers gets E0 Do not award E1 if calculation error in upper limit	For use of quartiles and IQR $\mathrm{Q}_{1}=3.95 ; \mathrm{Q}_{3}=6.0 ; \mathrm{IQR}=2.05$ 3.95 - 1.5(2.05) gets M1 Allow other sensible definitions of quartiles $6.0+1.5(2.05) \text { gets M1 }$ Limits 0.875 and 9.075 So there are no outliers NB do not penalise over-specification here as not the final answer but just used for comparison. FT from SC1
2	(i)	$\begin{array}{\|c\|} \hline r \\ \hline \mathrm{P}(X=r) \\ 3 k+8 k+1 \\ k=0.02 \end{array}$	$\begin{array}{r} 2 \\ \hline 3 k \\ +24 \end{array}$	3	4	$\begin{array}{\|c\|} \hline 5 \\ \hline 24 k \\ \hline \end{array}$	B1 M1 A1 [3]	For correct table (ito k or correct probabilities 0.06, $0.16,0.30,0.48$) or $k=1 / 50$ (with or without working)	For their four multiples of k added and $=1$. Allow M1A1 even if done in part (ii) - link part (ii) to part (i)

Question		Answer	Marks		Guidance
3	(ii)	L	B1 B1 B1 [3]	For two labelled intersecting circles For at least 2 correct probabilities. For remaining probabilities	FT their 0.028 provided <0.038
3	(iii)	$P(L \cap W)=0.028, P(L) \times P(W)=0.038 \times 0.07=0.00266$ Not equal so not independent	A1 E1* dep on M1 [3]	For correct use of $P(L) \times P(W)$ If $\mathrm{P}(L)$ wrong, max M1A0E0. No marks if $\mathrm{P}(W)$ wrong For 0.00266 Allow 'they are dependent' Do not award E1 if $\mathrm{P}(L \cap W)$ wrong	Or EG $\mathrm{P}(L \mid W)=0.4, \mathrm{P}(L)=0.038$ Not equal so not independent M1 is for comparing with some attempt at numbers $\mathrm{P}(L \mid W)$ with $\mathrm{P}(L)$, A1 for 0.038 If $\mathrm{P}(L)$ wrong, max M1A0E0
4	(i)	$\begin{aligned} & \binom{11}{3} \\ & =165 \end{aligned}$	M1 A1 [2]	Seen Cao	

Question		Answer	Marks		Guidance
4	(ii)	$\frac{\binom{5}{2} \times\binom{ 6}{1}}{\binom{11}{3}}+\frac{\binom{5}{3} \times\binom{ 6}{0}}{\binom{11}{3}}=\frac{60}{165}+\frac{10}{165}=\frac{70}{165}=\frac{14}{33}=0.424$ Alternative $\begin{aligned} 1 & -\mathrm{P}(1 \text { or } 0)=1-3 \times \frac{5}{11} \times \frac{6}{10} \times \frac{5}{9}-\frac{6}{11} \times \frac{5}{10} \times \frac{4}{9} \\ & =1-\frac{5}{11}-\frac{4}{33}=\frac{14}{33} \end{aligned}$ M1 for $1-\mathrm{P}(1$ or 0$)$, M 1 for first product, M 1 for $\times 3$, M 1 for second product, A1	M1 M1 M1 M1 A1 [5]	For intention to add correct two fractional terms For numerator of first term For numerator of sec term Do not penalise omission of $\binom{6}{0}$ For correct denominator cao	Or For attempt at correct two terms For prod of 3 correct fractions $=4 / 33$ For whole expression ie $3 \times \frac{5}{11} \times \frac{4}{10} \times \frac{6}{9}\left(=\frac{4}{11}\right)(=3 \times 0.1212 \ldots)$ For attempt at $\frac{5}{11} \times \frac{4}{10} \times \frac{3}{9}\left(=\frac{2}{33}\right)$ cao Use of binomial can get max first M1
5	(i)	$\left(\frac{5}{6}\right)^{2} \times \frac{1}{6}=\frac{25}{216}(=0.116)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	For $5 / 6$ (or $1-1 / 6$) seen For whole product cao	If extra term or whole number factor present give M1M0A0 Allow 0.12 with working
5	(ii)	$1-\left(\frac{5}{6}\right)^{10}=1-0.1615=0.8385$	M1 A1 [2]	For $(5 / 6)^{10}$ (without extra terms)	Allow 0.838 or 0.839 without working and 0.84 with working. For addition $\mathrm{P}(X=1)+\ldots+\mathrm{P}(X=10)$ give M1A1 for 0.84 or better, otherwise M0A0

Question		Answer	Marks	Guidance	
6	(i)	$4+1 / 2$ of $18=4+9=13$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	For $1 / 2$ of 18 cao	13/100 gets M1A0
6	(ii)	$\begin{aligned} & (\text { Median })=50.5^{\text {th }} \text { value } \\ & \text { Est }=140+\left(\frac{25.5}{29}\right) \times 5 \text { or }=140+\left(\frac{50.5-25}{54-25}\right) \times 5 \\ & =144.4 \end{aligned}$	M1 M1 A1 [3]	For 50.5 seen For attempt to find this value	SC2 for use of $50^{\text {th }}$ value leading to Est $=140+(25 / 29 \times 5)=144.3$ (SC1 if over-specified) $\text { or Est }=145-\left(\frac{3.5}{29}\right) \times 5=144.4$ NB no marks for mean $=144.35$ NB Watch for over-specification

Question		Answer						Marks	Guidance fds If fds not given and at least 3 heights correct then max M1A0G1W1H0 Allow restart with correct heights if given fd wrong (for last three marks only)	
								[5]		
6	(iv)	4 boys 0.6×15 $\text { = } 9 \text { girls }$ So 5 more gi						$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For 0.6×15 For 9 girls cao	Or $45 \times 0.2=9$ (number of squares and 0.2 per square)
6	(v)	Frequencies So mean $=$ $\underline{(132.5 \times 18)+}$ $\begin{aligned} & =\underline{(2385)+(32} \\ & =146.9 \\ & \text { (Exact answe } \end{aligned}$		ints for 142.5 23 $+(147.5 x$ 100 $572.5)+$ 100 $)$	girls are 147.5 31 $\times 31)+($ $2945)+1$	155 19 $\times 19)$ 07.5)	167.5 9$167.5 \times 9)$	B1 M1 M1* Dep on M1 A1	For at least three frequencies correct At least three midpoints correct For attempt at $\sum x f$ For division by 100 Cao NB Watch for overspecification	No further marks if not using midpoints For sight of at least $3 x f$ pairs Allow answer 146.9 or 147 but not 150 NB Accept answers seen without working (from calculator) Use of 'not quite right' midpoints such as 132.49 or 132.51 etc can get B1B0M1M1A0

Question			Answer	Marks		Guidance
7	(i)	(A)	$\begin{aligned} & X \sim \mathrm{~B}(10,0.35) \\ & \mathrm{P}(5 \text { accessing internet })=\binom{10}{5} \times 0.35^{5} \times 0.65^{5} \\ & =0.1536 \end{aligned}$ OR from tables $=0.9051-0.7515=0.1536$	M1 M1 A1 OR M2 A1 [3]	or $0.35^{5} \times 0.65^{5}$ For $\binom{10}{5} \times p^{5} \times q^{5}$ cao For $0.9051-0.7515$ cao	With $p+\boldsymbol{q}=\mathbf{1}$ Also for 252×0.0006094 Allow 0.15 or better NB 0.153 gets A0 See tables at the website http://www.mei.org.uk/files/pdf/formu la_book_mf2.pdf
7	(i)	(B)	$\begin{aligned} & \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4) \\ & =1-0.7515 \\ & =0.2485 \end{aligned}$	M1 A1 [2]	$\begin{aligned} & \text { For } 0.7515 \\ & \text { cao } \end{aligned}$	Accept 0.25 or better - allow 0.248 or 0.249 Calculation of individual probabilities gets B2 if fully correct 0.25 or better, otherwise B0.
7	(i)	(C)	$\begin{aligned} & \mathrm{E}(X)=n p=10 \times 0.35 \\ & =3.5 \end{aligned}$	M1 A1 [2]	For 10×0.35 cao	If any indication of rounding to 3 or 4 allow M1A0

Question		Answer	Marks	Guidance	
7	(ii)	Let $X \sim \mathrm{~B}(20,0.35)$ Let $p=$ probability of a customer using the internet (for population)	B1	For definition of p in context	Minimum needed for B 1 is $\mathrm{p}=$ probability of using internet. Allow $\mathrm{p}=\mathrm{P}$ (using internet) Definition of p must include word probability (or chance or proportion or percentage or likelihood but NOT possibility). Preferably as a separate comment. However can be at end of H_{0} as long as it is a clear definition ' $p=$ the probability of using internet', Do NOT allow 'p = the probability of using internet is different'
		$\mathrm{H}_{0}: p=0.35$	B1	For H_{0}	Allow $\mathrm{p}=35 \%$, allow only p or θ or π or ρ. However allow any single symbol if defined (including x) Allow $\mathrm{H}_{0}=p=0.35$, Allow H_{0} : $p=7 / 20$ or $p={ }^{35} / 100$ Allow NH and AH in place of H_{0} and H_{1} Do not allow $\mathrm{H}_{0}: \mathrm{P}(X=x)=0.35$ Do not allow H_{0} : $=0.35$, $=35 \%$, $\mathrm{P}(0.35), \mathrm{p}(x)=0.35, x=0.35$ (unless x correctly defined as a probability) Do not allow H_{0} and H_{1} reversed For hypotheses given in words allow Maximum B0B1B1 Hypotheses in words must include probability (or chance or proportion or percentage) and the figure 0.35 oe Thus eg $\mathrm{H}_{0}: \mathrm{p}$ (using internet) $=0.35$, $\mathrm{H}_{1}: \mathrm{p}$ (using internet) $\neq 0.35$ gets B0B1B1

| Question | | Answer | Marks | |
| :---: | :--- | :--- | :--- | :--- | :--- |

APPENDIX

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified, deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non-probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig.

Additional notes re Q7 part ii

Comparison with 97.5% method
If 97.5% seen anywhere then
B1 for $\mathrm{P}(X \leq 9)$
B1 for 0.8782
M1* for comparison with 97.5% dep on second B1
A1* for not significant oe
E1*

Smallest critical region method:
Smallest critical region that 10 could fall into is $\{10,11,12,13,14,15,16,17,18,19,20\}$ gets $\mathbf{B 1}$ and has size $\mathbf{0 . 1 2 1 8}$ gets $\mathbf{B 1}$, This is $>\mathbf{2 . 5 \%}$ gets $\mathbf{M 1 *}$, A1*, E1* as per scheme
NB These marks only awarded if $\mathbf{1 0}$ used, not other values.
Use of k method with no probabilities quoted:
This gets zero marks.

Use of k method with one probability quoted:
Mark as per scheme
Line diagram method and Bar chart method
No marks unless correct probabilities shown on diagram, then mark as per scheme.
Upper tailed test done with H_{1} : $\mathrm{p}>0.35$
Hyp gets max B1B1B0E0
If compare with 5\% give SC2 for $\mathrm{P}(\mathrm{X} \geq 10)=1-0.8782=0.1218>5 \%$ and SC1 for final conclusion (must be 'larger than' not 'different from')
If compare with 2.5% no further marks B0B0M0A0E0
Lower tailed test done with H_{1} : $\mathrm{p}<0.35$
No marks out of last 5.

