C4 Solutions

June 2005

1

$$
\begin{gathered}
x ^ { 2 } + x + 1 \longdiv { x ^ { 4 } + 3 x ^ { 3 } + 5 x ^ { 2 } + 4 x - 1 } \\
\frac{x^{4}+x^{3}+x^{2} \quad \downarrow}{2 x^{3}+4 x^{2}+4 x} \\
\frac{2 x^{3}+2 x^{2}+2 x}{2 x^{2}-2 x+}+ \\
2 x^{2 x+}+
\end{gathered}
$$

The quotient is $x^{2}+2 x+2$ and the remainder is -3 .
2 We use integration by parts with

$$
\begin{array}{lll}
u=x & \Rightarrow & \frac{d u}{d x}=1 \\
\frac{d v}{d x}=\cos x & \Rightarrow & v=\sin x
\end{array}
$$

Therefore

$$
\begin{aligned}
\int x \cos x d x & =x \sin x-\int \sin x d x \\
& =x \sin x-(-\cos x) \\
& =x \sin x+\cos x
\end{aligned}
$$

So, $\int_{0}^{\frac{\pi}{2}} x \cos x d x=x \sin x+\cos x x_{0}^{\frac{\pi}{2}}=\left(\frac{\pi}{2}+0\right)-(0+1)=\frac{\pi}{2}-1$
3 (i)
The direction of line L_{1} is $\left(\begin{array}{l}-1 \\ -2 \\ -4\end{array}\right)-\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)=\left(\begin{array}{c}-3 \\ 1 \\ -5\end{array}\right) \quad$ (or you could subtract the vectors the other way round!)
The equation for L_{1} can be found using a point on the line and the direction. So a suitable equation would be:

$$
\mathbf{r}=\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right)+t\left(\begin{array}{c}
-3 \\
1 \\
-5
\end{array}\right) \quad \text { (or you could use the point }(-1,-2,-4) \text { as the point the line }
$$

passes through).
(ii) The equation for L_{2} is

$$
\mathbf{r}=\left(\begin{array}{c}
3 \\
2 \\
-9
\end{array}\right)+s\left(\begin{array}{c}
4 \\
-4 \\
5
\end{array}\right) \quad \text { (note the need for different letters in the equations for the }
$$

two lines.
We need to show that the lines do not meet.
If the lines were to meet the point of intersection is located where:

$$
\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right)+t\left(\begin{array}{c}
-3 \\
1 \\
-5
\end{array}\right)=\left(\begin{array}{c}
3 \\
2 \\
-9
\end{array}\right)-s\left(\begin{array}{c}
4 \\
+4 \\
5
\end{array}\right)-
$$

We have 3 equations:

Solving for t and s in equations (1) and (2): $\begin{gathered}2 t=-6 \\ t=-3\end{gathered}$
Substituting this into equation (2): $-3+4 s=5$

$$
\begin{aligned}
4 \mathrm{~s} & =8 \\
\mathrm{~s} & =2
\end{aligned}
$$

We now check to see whether these values for s and t work in equation (3):

$$
5 t+5 s=-15+10=-5 \neq 10
$$

So the lines do not intersect. So the lines are skew (since they do not meet and are not parallel).
4 (i)

$$
\begin{aligned}
\int \frac{1}{\left(1+x^{2}\right)^{2}} d x & =\int \frac{1}{\left(1+\tan ^{2} \theta\right)^{2}} d x \\
& =\int \frac{1}{\left(1+\tan ^{2} \theta\right)^{2}} \sec ^{2} \theta d \theta
\end{aligned}
$$

$$
x=\tan \theta \Rightarrow \frac{d x}{d \theta}=\sec ^{2} \theta
$$

$$
\Rightarrow \quad d x=\sec ^{2} \theta d \theta
$$

But $1+\tan ^{2} \theta=\sec ^{2} \theta$
So, the integral becomes: $\int \frac{1}{\left(\sec ^{2} \theta\right)^{2}} \sec ^{2} \theta d \theta=\int \frac{1}{\sec ^{2} \theta} d \theta=\int \cos ^{2} \theta d \theta$ (as required)
(ii) $\int \cos ^{2} d \theta=\int \frac{1}{2}(1+\cos 2 \theta) d \theta \quad$ (note: you should learn the result $\cos ^{2} \theta \xrightarrow{1} \cos 2 \theta \nexists$

So $\int \cos ^{2} d \theta=\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta$

$$
\left.\begin{array}{rlrl}
\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{2}} d x & =\int_{x=0}^{1} \cos ^{2} \theta d \theta=\int_{\theta=0}^{\frac{\pi}{4}} \cos ^{2} \theta d \theta & \begin{array}{ll}
x=0 & \Rightarrow \\
x=1 & \Rightarrow
\end{array} \theta=0 \\
& =\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta_{0}^{\frac{\pi}{4}}
\end{array}\right)
$$

 order either in a clockwise or anti-clockwise direction.

Because ABCD is a parallelogram:

$$
\overrightarrow{A D}=\overrightarrow{B C}=\mathbf{c}-\mathbf{b}=\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)-\left(\begin{array}{c}
3 \\
-2 \\
0
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
-2
\end{array}\right)
$$

$$
\begin{align*}
& 2-3 \mathrm{t}=3+4 \mathrm{~s} \\
& \text { so } \quad 3 t+4 s=-1 \tag{1}\\
& -3+t=2-4 s \tag{2}\\
& 1-5 \mathrm{t}=-9+5 \mathrm{~s} \tag{1}\\
& \text { so } \\
& \mathrm{t}+4 \mathrm{~s}=5 \\
& 1-5 \mathrm{t}=-9+5 \mathrm{~s} \quad \text { so } \quad 5 \mathrm{t}+5 \mathrm{~s}=10 \tag{3}
\end{align*}
$$

So the position vector of D is: $\left.\overrightarrow{O D}=\overrightarrow{O A}+\overrightarrow{A D}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)+\left(\begin{array}{c}2 \\ 1 \\ 2\end{array}\right)=\begin{array}{c}-(\pi \\ \hline\end{array}\right)$
(ii) Angle ABC is the angle between the vectors $\overrightarrow{A B}$ and $\overrightarrow{C B}$.

The scalar product of these vectors is: $\left(\begin{array}{c}1 \\ -3 \\ 3\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -1 \\ 5\end{array}\right)=2+3-6=-1$

The magnitude of the two vectors are: $\left|\left(\begin{array}{c}1 \\ -3 \\ -3\end{array}\right)\right|=\sqrt{1+9+9}=\sqrt{19}$ and $\left|\begin{array}{c}2 \\ -1 \\ 2\end{array}\right|=\sqrt{4+1+4}=3$.
The angle can be found using the formula: $\mathbf{a} . \mathbf{b}=a b \cos \theta$
Substituting into this formula gives: $\begin{array}{llll}1 & \sqrt{19} & 3 & \cos \theta\end{array}$
So
$\cos \theta=-0.07647$
i.e. $\quad \theta=94^{\circ}$ (to the nearest degree).

6 (i) Implicit differentiation:

$$
\begin{aligned}
& \frac{d}{d x}\left(x y^{2}\right)=1 y^{2}+x 2 y \frac{d y}{d x}=y^{2}+2 x y \frac{d y}{d x} \quad \text { (using the product rule). } \\
& \frac{d}{d x}(2 x)=2 \\
& \frac{d}{d x}(3 y)=3 \frac{d y}{d x}
\end{aligned}
$$

So

$$
y^{2}+2 x y \frac{d y}{d x}=2+3 \frac{d y}{d x}
$$

Putting all the $\frac{d y}{d x}$ terms together on the left hand side:

$$
(2 x y-3) \frac{d y}{d x}=2-y^{2}
$$

Therefore: $\frac{d y}{d x}=\frac{2-y^{2}}{2 x y-3}$
(ii) Tangents parallel to the y-axis have infinite gradient.
$\frac{d y}{d x}=\infty$ if the denominator is zero, i.e. if $2 x y$ _ $\quad 0$ ie_if $y=\frac{3}{2 x}$.
If we substitute this expression for y into the equation of the curve, we get:

$$
\begin{aligned}
& x\left(\frac{3}{2 x}\right)^{2}=2 x+\frac{9}{2 x} \\
& x\left(\frac{9}{4 x^{2}}\right)=2 x+\frac{9}{2 x}
\end{aligned}
$$

$$
\left(\frac{9}{4 x}\right)=2 x+\frac{9}{2 x}
$$

If we multiply both sides by $4 x$ to remove the fractions we get:

$$
\begin{aligned}
& 9=8 x^{2}+18 \\
& -9=8 x^{2}
\end{aligned}
$$

This is impossible, because x^{2} cannot be negative. So there are no tangents parallel to the y axis.
7 (i)
$\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-1 / t^{2}}{2 t}=\frac{-1}{2 t^{3}}$
(ii) At the point $(4,-1 / 2)$, the value of t is -2 .

So: $\frac{d y}{d x}=\frac{-1}{2(-2)^{3}}=\frac{-1}{-16}=\frac{1}{16}$.
The equation of a tangent is $y=m x+c$, i.e. $y=\frac{1}{16} x+c$
Substitute in $x=4$ and $y=-1 / 2: \quad \frac{-1}{2}=\frac{1}{16}(4)+c \Rightarrow c=-\frac{3}{4}$
Therefore the equation of the tangent is y
This rearranges to give: $x-16 y=12$ (as required).
(iii) Put $x=t^{2}, y=\frac{1}{t}$ into $x-16 y=12$:-

$$
t^{2}-\frac{16}{t}=12 .
$$

Multiply through by t to remove the fraction: $t^{3}-16=12 t$ or $t^{3}-12 t-16=0$.
We now need to solve this equation. We know $t=-2$ is one solution as that is one point where the tangent meets the curve. So $t+2$ must be a factor.

We can therefore divide by $t+2$ in order to find the other factors:

$$
\begin{array}{r}
t + 2 \longdiv { t ^ { 3 } + 0 t ^ { 2 } - 1 2 t - 1 6 } \\
\frac{t^{3}+2 t^{2}}{-2 t^{2}-12 t} \\
\frac{-2 t^{2}-4 t}{-8 t-16} \\
\frac{-8 t-16}{0}
\end{array}
$$

So we need to solve $t^{2}-2 t-8=0$. This factorises: $(t-4)(t+2)=0$.
So the other value of the parameter is $t=4$.

8 (i)

$$
\begin{aligned}
\frac{3 x+4}{(1+x)(2+x)^{2}} & =\frac{A}{1+x}+\frac{B}{2+x}+\frac{C}{(2+x)^{2}} \\
& =\frac{A(2+x)^{2}+B(1+x)(2+x)+C(1+x)}{(1+x)(2+x)^{2}}
\end{aligned}
$$

Therefore: $3 x+4=A(2+x)^{2}+B(1+x)(2+x)+C(1+x)$
Substitute $x=-2:-2=-\mathrm{C}$ i.e. $\mathrm{C}=2$
Substitute $x=-1: \quad 1=\mathrm{A}$ i.e. $\mathrm{A}=1$.
Now substitute any further value for x :
E.g. $x=0: \quad 4=4 \mathrm{~A}+2 \mathrm{~B}+\mathrm{C}$

$$
\begin{aligned}
4 & =4+2 B+2 \\
2 B & =-2, \text { i.e. } B=-1
\end{aligned}
$$

Therefore $\frac{3 x+4}{(1+x)(2+x)^{2}}=\frac{1}{1+x}-\frac{1}{2+x}+\frac{2}{(2+x)^{2}}$
(ii)
$\frac{3 x+4}{(1+x)(2+x)^{2}}=\frac{1}{1+x}-\frac{1}{2+x}+\frac{2}{(2+x)^{2}}=(1+x)^{-1}-(2+x)^{-1}+2(2+x)^{-2}$.
We use the Binomial expansion formula: $(1+x)^{n}=1+n x+\frac{n(n-1)}{2} x^{2}$.

$$
\begin{aligned}
(1+x)^{-1} & \left.=1-x+\frac{(-1)(-2)}{2} x^{2}=1-x+x^{2}-\ldots \quad \text { (This is valid if }-1<x<1\right) . \\
(2+x)^{-1} & =2\left(1+\frac{x}{2}\right)^{-1}=2^{-1}\left(1+\frac{x}{2}\right)^{-1} \\
& =\frac{1}{2}\left(1+(-1) \frac{x}{2}+\frac{(-1)(-2)}{2}\left(\frac{x}{2}\right)^{2}+\ldots\right)
\end{aligned}
$$

$$
=\frac{1}{2} 1-\frac{x}{2}+\frac{x^{2}}{4}+\ldots
$$

(This is valid if $-1<\frac{x}{2}<1$,

$$
=\frac{1}{2}-\frac{x}{4}+\frac{x^{2}}{8}
$$

i.e. if $-2<x<2$)

$$
\begin{aligned}
(2+x)^{-2} & =2^{-2}\left(1+\frac{x}{2}\right)^{-2}=\frac{1}{4}\left(1+(-2) \frac{x}{2}+\frac{(-2)(-3)}{2} \frac{x}{2}^{2}+\ldots\right) \\
& =\frac{1}{4}\left(1-x+\frac{3 x^{2}}{4}+\ldots\right) \\
& =\frac{1}{4}-\frac{x}{4}+\frac{3 x^{2}}{16}+\ldots
\end{aligned}
$$

(This is also valid if $-2<x<2$)

So, $\frac{3 x+4}{(1+x)(2+x)^{2}}=(1+x)^{-1}-(2+x)^{-1}+2(2+x)^{-2}=1-x+x^{2}-\left(\frac{1}{2}-\frac{x}{4}+\frac{x^{2}}{8}\right)+2\left(\frac{1}{4}-\frac{x}{4}+\frac{3 x^{2}}{16}\right)$

$$
=1-\frac{5}{4} x+\frac{5}{4} x^{2}
$$

(iii) The expansion is valid if $-1<x<1$.

9 (i)

This is the rate at which the temperature of the object changes.
k is the proportionality
constant. It is negative as the object is cooling.

This is the difference in temperature between the object and the surroundings.
(ii) We separate out the variables: $\frac{1}{\theta-20} d \theta=-k d t$

Put in integral signs: $\int \frac{1}{\theta-20} d \theta=-\int k d t$
So $\ln (\theta-20)=-k t+c$
i.e. $\theta-20=e^{-k t+c}=e^{-k t} e^{c}$

Therefore: $\theta \geq \neq A e^{-k t}$ (where $A=e^{c}$)
When $t=0, \theta=100$: So $100=20+A e^{0} \Rightarrow A=80$
So $\theta=20+80 e^{-k t}$
When $t=5, \theta=68$: So $68=20+80 e^{-k \times 5}$

$$
\Rightarrow 48=80 e^{-k \times 5}
$$

$$
\Rightarrow \frac{48}{80}=e^{-5 k}
$$

$$
\Rightarrow \frac{3}{5}=e^{-5 k}
$$

Take logarithms: $\ln \left(\frac{3}{5}\right)=-5 k$
i.e. k (as $\left.\ln \frac{5}{3}=-\ln \frac{3}{5}\right)$

So we get: $\theta=20+80 e^{-\frac{1}{5} \ln \left(\frac{5}{3}\right) t} \quad$ (as required),
(iii) If the liquid falls by another $32^{\circ} \mathrm{C}$, the new temperature will be $36^{\circ} \mathrm{C}$:

	$36=2080 e^{-\frac{1}{5} \ln \left(\frac{5}{3}\right.}$
	$16=80 e^{-\frac{1}{5} \ln \left(\frac{5}{3}\right) t}$
ie.	$0.2=e^{-\frac{1}{5} \ln \left(\frac{5}{3}\right) t}$
i.e.	$\ln 0.2=-\frac{1}{5} \ln \left(\frac{5}{3}\right)$

So,

$$
\mathrm{t}=15.75 \text { minutes } .
$$

So it cools by a further $32{ }^{\circ} \mathrm{C}$ after another 10.75 minutes.

