Mark Scheme 4721
June 2005

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \[
\begin{aligned}
\& x^{2}-6 x-40 \geq 0 \\
\& (x+4)(x-10) \geq 0
\end{aligned}
\]

\[
x \leq-4, \quad x \geq 10
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
\(\begin{array}{rr}\text { A1 } \& 4 \\ \& 4\end{array}\)
\end{tabular} \& \begin{tabular}{l}
Correct method to find roots
\[
-4,10
\] \\
Correct method to solve quadratic inequality e.g. +ve quadratic graph
\[
x \leq-4, \quad x \geq 10
\] \\
(not wrapped, not strict inequalities, no 'and')
\end{tabular} \\
\hline 2(i) \& \begin{tabular}{l}
EITHER
\[
\begin{aligned}
\& 3\left(x^{2}+4 x\right)+7 \\
\& 3(x+2)^{2}-12+7 \\
\& 3(x+2)^{2}-5
\end{aligned}
\] \\
OR
\[
\begin{aligned}
\& 3\left(x^{2}+2 a x+a^{2}\right)+b \\
\& 3 x^{2}+6 a x+3 a^{2}+b \\
\& 6 a=12 \\
\& a=2 \\
\& 3 a^{2}+b=7 \\
\& b=-5 \\
\& x=-2
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 4 \\
B 1 ft 1
5
\end{tabular} \& \[
\begin{aligned}
\& a=\frac{12}{6 \text { or } 2} \\
\& a=2 \\
\& \left.7-a^{2} \text { or } 7-3 a^{2} \text { or } \frac{7}{3}-a^{2} \text { (their } a\right) \\
\& b=-5 \\
\& x=-2
\end{aligned}
\] \\
\hline 3 (i)

(ii)

(iii) \& \begin{tabular}{l}
 \\
Reflection in x-axis or reflection in y-axis
$$
y=(x-p)^{3}
$$

 \&

B1 1 \\
B1 \\
B1 2 \\
M1 \\
A1 $\begin{array}{ll}2 \\ & 5\end{array}$

 \&

Correct sketch showing point of inflection at origin \\
Reflection \\
In x-axis or $y=0$ or y-axis or $x=0$

$$
\begin{aligned}
& y=(x \pm p)^{3} \\
& y=(x-p)^{3}
\end{aligned}
$$

\end{tabular} \\

\hline
\end{tabular}

