Mark Scheme 4721 June 2005

1	$x^2 - 6x - 40 \ge 0$	M1	Correct method to find roots
	$(x+4)(x-10) \ge 0$		
		A 1	4 40
	10 + ¥	AI	-4, 10
	20 -		
	-40 -50 -60	M1	Correct method to solve quadratic inequality e.g. +ve quadratic graph
	$x \leq -4, x \geq 10$	A1 4	$x \le -4, x \ge 10$
		4	(not wrapped, not strict inequalities, no 'and')
2(i)	EITHER $2(x^2 + 4x) + 7$		
	3(x + 4x) + 7		
	$3(x+2)^2-12+7$		
	$3(x+2)^2-5$		
	OR		
	$3\left(x^2+2ax+a^2\right)+b$		
	$3x^2 + 6ax + 3a^2 + b$		
	6 <i>a</i> = 12	M1	$a = \frac{12}{6 \text{ an } 2}$
	<i>a</i> = 2		a = 2
	$3a^2 + b = 7$	A1	
	b = -5	M1	$7 - a^2$ or $7 - 3a^2$ or $\frac{7}{3} - a^2$ (their a)
		A1 4	b = -5
(ii)	x = -2	B1 ft 1 5	x = -2
3 (i)	1 У /	B1 1	Correct sketch showing point of inflection at origin
	± / _		
	1		
(ii)	Reflection in <i>x</i> -axis or reflection in <i>y</i> -axis	B1	Reflection
		B1 2	In <i>x</i> -axis or <i>y</i> =0 or <i>y</i> -axis or <i>x</i> =0
(iii)	$y = \left(x - p\right)^3$	M1	$y = \left(x \pm p\right)^3$
		A1 2	$y = \left(x - p\right)^3$
		5	

4	$k = x^3$	*M1	Attempt a substitution to obtain a
	$k^2 + 26k - 27 = 0$	A1	$k^2 + 26k - 27 = 0$
	k = -27, 1	A1	-27, 1
		DM1	Attempt cube root
	x = -3.1	A1 5	x = -3, 1 (no extras)
			(SR: x = 1 seen www B1
			x = -3 seen www B1)
		5	
5 (a)	$2x^{\frac{2}{3}} \times 3x^{-1}$	M1	Adds indices
	$-6u^{-1}$	A1 2	$6x^{\frac{-1}{3}}$
	$= 0x^{\circ}$		
(b)	$2^{40} \times 4^{30}$		
	$=2^{40} \times 2^{60}$	M1	2 ⁶⁰ or 4 ²⁰
	$=2^{100}$	A1 2	2 ¹⁰⁰
(c)	$26(4+\sqrt{3})$	M1	Multiply top and bottom by
	$\overline{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}$		$\left(4+\sqrt{3}\right)$ or $\left(-4-\sqrt{3}\right)$
	$=8+2\sqrt{3}$	A1	$\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)=13$
		A1 3 7	$8 + 2\sqrt{3}$
6 (i)	$(x^2+2x+1)(3x-4)$	M1	Expand 2 brackets to give an expression
	$-3r^3+2r^2-5r-4$		of the form $ax^2 + bx + c$ ($a \neq 0$, $b \neq 0$, $c \neq 0$) and attempt to multiply by third
	-3x + 2x - 3x - 4		bracket
		A 4	$3x^3 + 2x^2 - 5x - 4$
		A1 3	3 correct simplified terms Completely correct
(ii)	$9x^2 + 4x - 5$		$9x^2 + 4x - 5$
		B1 ft	
		B1 ft 2	1 term correct Completely correct (3 terms)
(iii)	18x + 4	M1	Attempt to differentiate their (ii)
		A1 ft 2	18x + 4 (2 terms)
			(SR (ii) $3ax^2 + 2bx + c$ B1
			(iii) $6ax + 2b$ B1)
		7	

7 (i)	$b^2 - 4ac$	M1	Uses $b^2 - 4ac$
	(a) $36 - 9 \times 4 = 0$		
	(b) $100 - 48 = 52$	A1	1 correct
		A1 3	3 correct
	(c) $4 - 20 = -16$		SR All 3 values correct but $$ used B1
(;;)			
(11)	(a) Fig 3	B1	1 correct matching
	(b) Fig 2	B1	3 correct matchings
	(c) Fig 5		
	 (a) 1 root, touches x-axis once, line of symmetry x= -3 or root x =-3 	B1	1 correct comment relating roots to
	(b) 2 roots, meets <i>x</i> -axis twice, line of		symmetry or vertex o.e. for one graph
	symmetry x=5	B1 4	2 further correct comments about roots,
	 (c) No real roots, does not meet x- axis 		graphs
		7	
8 (i)	Circle, centre (0, 0), radius 5	B1 B1 2	Circle centre (0, 0) Radius 5
(ii)	y = 5 - 2r		
(,	y = 5 - 2x	M1	Attempt to solve equations simultaneously
	x + (5 - 2x) = 25		
	$5x^2 - 20x = 0$	*M1	Substitute for x/y or correct attempt at
	OR 5		linear equations)
	$x = \frac{3 - y}{2}$		
	$(5-y)^2$	DM1	Obtain quadratic $ax^2 + bx + c = 0$ (a $\neq 0, b \neq 0$)
	$\frac{(3-y)}{4} + y^2 = 25$		(4 + 0, 5 + 0)
	$y^2 - 2y - 15 = 0$	M1	Correct method to solve quadratic
	x = 0, 4	A1	x = 0.4 or y = 5 - 3
	y = 5, -3	A1 6	y = 5 - 3 or $x = 0.4$
		-	SR one correct pair www B1
		8	SRIf solution by graphical methods:Drawing circle, centre (0,0) radius 5B1Drawing lineLooking for intersectionM1(0,5) correct(4, -3) correctA2
1			

9 (i)	$y = \frac{4}{2}x + \frac{5}{2}$		
(ii)	gradient = $\frac{4}{3}$ gradient of	B1 1	$\frac{4}{3}$ or 1.33 or better
	$\perp^r = -\frac{3}{4}$	B1 ft	$-\frac{3}{4}$ seen or implied
	$y - 2 = -\frac{3}{4}(x - 1)$	M1	Attempts equation of straight line through (1, 2) with any gradient
	4y + 3x = 11	A1	$y-2 = -\frac{3}{4}(x-1)$
		A1 4	3x + 4y - 11 = 0 (not aef)
(iii)	$P\left(-\frac{5}{4},0\right)$	B1	$\left(-\frac{5}{4},0\right)$ seen or implied
	$Q\left(0,\frac{11}{4}\right)$	B1 ft	$\left(0,\frac{11}{4}\right)$ seen or implied (from a straight
(1.1)	$\left(-\frac{5}{8},\frac{11}{8}\right)$	B1 ft 3	line equation in (ii)) $\left(-\frac{5}{8},\frac{11}{8}\right)$ aef
(IV)	$\sqrt{\left(\frac{5}{4}\right)^2 + \left(\frac{11}{4}\right)^2}$	M1	Correct method to find line length using Pythagoras' theorem
	$\frac{\sqrt{146}}{4}$	A1	$\sqrt{\left(\frac{5}{4}\right)^2 + \left(\frac{11}{4}\right)^2}$
		A1 3	$\frac{\sqrt{146}}{4}$
		11	

10 (i)	dy ₂			$x^2 - 9$	
	$\frac{1}{dr} = x^2 - 9$	B1		1 term correct	
	ů.	B1	2	Both terms correct	
(;;)	$x^{2} = 0 - 0$	****		uses $\frac{dy}{dy} = 0$	
(11)	x - 9 = 0	"IVI'I		$\frac{dses}{dx} = 0$	
	x = 3, -3	A1		x = 3, -3	
	y = -18, 18	۸1	2	v = -18.18	
			5	(1 correct pair A1 A0)	
				(
(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}^2} = 2x$	DM [.]	1	Looks at sign of $\frac{d^2 y}{dx^2}$ or other	
	dx			correct method	
	$x = 3$ $\frac{d^2 y}{d^2 x} = 6$	A1		$r - 3 \min i m u m$	
	dx^2				
	$x = -3$ $\frac{d^2 y}{d^2} = -6$	A1	3	u – 2 may imum	
	dx^2		•	x = -5 max mutual (NLP) If no mothod shown but min one	4
				max correctly stated, award all 3 marl unless earlier incorrect working)	ks
(iv)	aradient of	B1		Gradient = – 8	
(1))		M1		$x^2 - 9 = -8$	
	24x + 3y + 2 = 0 is -8				
	$x^2 - 9 = -8$				
	$x = \pm 1$	M1		one of their x values substituted in bo	oth
	For line				
		M1		second x value substituted in both line	е
	$x = 1, y = -8\frac{2}{3}$			and curve <u>or</u> justification that first po	oint is
	1				
	$x = -1, y = 7\frac{1}{2}$	A1	5	p = 1, q = -8 - seen	
	5 For aurua			Alternative methods:	
	For curve			<u>Either:</u>	
	$x = 1, y = -8\frac{2}{3}$			simultaneously to get one solution	
	3			(either $x = 1$ or $x = -2$)	M1
	$r = -1$ $v = 8\frac{2}{3}$			Gradient of line = -8	B1
	x = 1, y = 0 3			Substitution of one x value into their	
	1 2^2			gradient formula and check for -8	M1
	$\therefore p = 1, q = -8{3}$			Substitution of other <i>x</i> value into	
	-			or justification as above	M1
				Correct <i>q</i> value	A1
				<u>Or:</u>	
				Solve equations for curve and line	N/14
				Factorise to $(x-1)^2(x+2)$	B1
				State that a double root implies	
				a tangent at $x = 1$	M2
			13	Correct value for y	A1