Mark Scheme 4752
 June 2005

Section A

1	$1+\frac{3}{2} X^{\frac{1}{2}}$	$1+3$	B2 for $k x^{\frac{1}{2}}$, or M1 for $x^{\frac{3}{2}}$ seen before differentiation or B 1 ft their $x^{\frac{3}{2}}$ correctly differentiated	4
2	1170	4	B1 for $a=11$ and B1 for $d=5$ or $20^{\text {th }}$ term $=106$ and M1 for 20/2[their (a) + their(106)] or 20/2[2their (a)+ (20-1)×their(d)] OR M1 for 6×20 and M2 for $5\left(\frac{20}{2}[20+1]\right)$ o.e.	4
3	$\pm \sqrt{13 / 4}$	3	B2 for $(-) \sqrt{ } 13 / 4$ or $\pm \sqrt{\frac{13}{16}}$ or M1 for $\sqrt{ } 13$ or $\sin ^{2} \theta+\cos ^{2} \theta=1$ used	3
4	$\begin{aligned} & x+x^{-1} \text { soi } \\ & y^{\prime}=1-1 / x^{2} \end{aligned}$ subs $x=1$ to get $y^{\prime}=0$ $y^{\prime \prime}=2 x^{-3}$ attempted Stating $y^{\prime \prime}>0$ so min cao	B1 B1 B1 M1ft A1	$1-x^{-2}$ is acceptable Or solving $1-x^{-2}=0$ to obtain $x=1$ or checking y^{\prime} before and after $x=1$ Valid conclusion First quadrant sketch scores B2	5
5	(i) 1 (ii) -2 (iii) $6 \log x$	1 2 2	M1 for $1 / 9=3^{-2}$ or $\log (1)-\log \left(3^{2}\right)$ base not requd; M1 for $5 \log x$ or $\log \left(x^{6}\right)$	5
6	Correct curve thro' y axis $(0,1)$ indicated on sketch or table 5.64	$\begin{aligned} & \text { G1 } \\ & \text { G1 } \\ & 3 \end{aligned}$	y, $y^{\prime} \& y^{\prime \prime}$ all positive independent B2 for other versions of 5.64(3....) or B1 for other ans 5.6 to 5.7 or M1 for $x \log 2=\log 50$ and M1 for $x=\log 50 \div \log 2$	5
7	$y=7-3 / x^{2}$ ое	5	B3 for $(y=)-3 / x^{2}+c$ [B1 for each of $k / x^{2}, k=-6 / 2$ and $+c$] and M1 for substituting $(1,4)$ in their attempted integration with $+c$, the constant of integration	5
8	(i) 66° or 66.4 or $66.5 \ldots$ 293.58 to 3 or more sf cao (ii) stretch (one way) parallel to the x-axis sf 0.5	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow 1.16 or 73.8 Lost for extras in range. Ignore extras outside the range Horizontal, from y axis, in x axis, oe	5
				36

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 9 \& i
ii
iii

iv \& \begin{tabular}{l}
$$
3 x^{2}-20 x+12
$$

$y-64=-16(x-2)$ o.e.

eg $y=-16 x+96$

Factorising $f(x) \equiv(x+2)(x-6)^{2}$

OR Expanding $(x+2)(x-6)^{2}$
$$
\frac{x^{4}}{4}-\frac{10 x^{3}}{3}+6 x^{2}+72 x
$$

value at $(x=6) \sim$ value at $(x=-2)$ 341(.3..) cao

 \&

4

B3

M2

E1

B2

M1

A1

 \&

B1 if one error " +c " is an error

M1 for subst $x=2$ in their y^{\prime}

A1 for $y^{\prime}=-16$ and B1 for $y=64$

or B1 for $f(-2)=-8-40-24+72=0$ and

B1 for $f^{\prime}(6)=0$ and

B1dep for $f(6)=0$

-1 for each error

Must have integrated $f(x)$
\end{tabular} \& 2

4
3

4

\hline 10 \& ii \& ```
$\mathrm{AB}=7.8(0), 7.798$ to 7.799 seen
area $=52.2$ to 52.3
$\tan 0.91=\mathrm{ST} / 12.6$
$\mathrm{ST}=12.6 \times \tan 0.91$ and
completion (16.208...)
area OSTR $=[2 \times][0.5 \times] 12.6 \times$
their(16.2) nb 204.
area of sector $=0.5 \times 12.6^{2} \times 1.82$
$=144.47$...
Logo $=59.6$ to 60.0
$\operatorname{arc}=12.6 \times 1.82[=22.9 \ldots]$
perimeter $=55.3$ to 55.4

``` &  & \begin{tabular}{l}
M1 for correct use of sine rule For long methods M1A1 for art 7.8 \\
M1 for \([2 \times][0.5 \times]\) their \(\mathrm{AB} \times 11.4 \times\) \(\sin 36^{\circ}\) \\
Accept 16.2 if ST is explicit but for long methods with pa check that their explicit expression \(=16.2\) \\
oe using degrees \\
soi by correct ans Accept 144, 144.5 \\
oe using degrees
\end{tabular} & 4 \\
\hline 11 & ii
iii
iv
v & \begin{tabular}{l}
81 \\
\((1 \mathrm{x}) 3^{n-1}\) \\
(GP with) \(a=1\) and \(r=3\) \\
clear correct use GP sum formula \\
(A) 6 www \\
(B) 243 \\
their (ii) \(>900\) \\
\((y-1) \log 3>\log 900\)
\[
y-1>\log 900 \div \log 3
\] \\
\(y=8\) cao
\end{tabular} & \[
\begin{aligned}
& \hline 1 \\
& 1 \\
& \text { M1 } \\
& \text { M1 } \\
& 2 \\
& 1 \\
& \\
& \text { M1ft } \\
& \text { M1ft } \\
& \text { M1 } \\
& \text { B1 } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
or M1 for \(=1+3+9+\ldots+3^{n-1}\) \\
M1 for \(364=\left(3^{n}-1\right) / 2\) \\
-1 once for = or < seen: condone wrong letter / missing brackets / no base
\end{tabular} & 1
1
2
3
3
4 \\
\hline
\end{tabular}```

