Mark Scheme 4722 June 2005

	(i)	$u_1 = 2, u_2 = 5, u_3 = 8$	B1		For the correct value of u_1
1	.,		B1		For both correct values of u_2 and u_3
1		The sequence is an Arithmetic Progression	B1	3	For a correct statement (any mention of
		1 0			arithmetic)
	(ii)	$\frac{1}{2} \times 100 \times (2 \times 2 + 99 \times 3) = 15050$	M1		For correct interpretation of Sigma notation –
		2			ie finding the sum of an AP or GP
			M1		For use of correct $\frac{1}{2}n(2a + (n-1)d)$, or
					equive with $n=100$ and $a \& d$ not both $=1$
			A 1	2	For correct value 15050
			AI	3	Tor concer value 15050
-	(')		D 1	0	
2	(1)	$r\theta = 12$, $\frac{1}{2}r^2\theta = 36$	BI	2	For $r\theta = 12$ stated correctly at any point
			BI	2	For $\frac{1}{2}r^2\theta = 36$ stated correctly at any point
	(ii)	$\frac{1}{2}r \times 12 = 36 \implies r = 6$	B1		For showing given value correctly
		Hence $\theta = 2$	B1	2	For correct value 2 (or 0.637π)
	(iii)	Segment area is $36 - \frac{1}{2} \times 6^2 \times \sin 2 = 19.6 \text{ cm}^2$	M1*	k	For use of $\Lambda = \frac{1}{2}ab \sin C$, or equivalent
			1.01	1 .4	
			MIC	lep*	For attempt at $30 - \Delta$
			AI	3	For correct value (rounding to) 19.6
	())		N 41	7	Process d'accordinates d'actions
3	(1)	$(2x^2 + 7x + 3)dx$	MI		For expanding and integration attempt
		$-2 u^3 + 7 u^2 + 2 u + 2$	AI		For at least one term correct
		$= \frac{1}{3}x + \frac{1}{2}x + 5x + c$	AI	4	For all three terms correct
			BI	4	For addition of arbitrary constant, and no
					or dx
	(ii)	۔ ب ا			
	(11)	$[2 x^{2}]_{0}$	M1		For integral of the form kx^2
		= 6	M1		For evaluating at least F(9), following attempt
				_	at integration
			A1	3	For final answer of 6 only
	(*)		2.64	7	
4	(1)	$\cos BCA = \frac{5^2 + 6^2 - 9^2}{2 \times 5 \times 6} = -\frac{1}{3}$	MI		For relevant use of the correct cosine formula
		2/0/0 0	MI		For attempt to rearrange correct formula
		So sin $BCA = \frac{2}{\sqrt{2}} \times 0.0428$	AI D1		For obtaining the given value correctly
		$DCA = \frac{1}{3}\sqrt{2} \approx 0.9426$	BI		For correct answer for sin <i>BCA</i> in any form
			M1		OR Ear substituting $\cos \mathbf{PCA} = \frac{1}{2}$
			M1		For attempt at evaluation
					For full verification
			R1	1	For correct answer for sin BCA in any form
	(ii)	Angles <i>BCA</i> and <i>CAD</i> are equal	B1		For stating using or implying the equal angles
	(11)	So air ADC 5 air CAD 1000			r or stating, using or imprying the equal angles
		$\sim \sin ADC = \frac{1}{15} \sin CAD = \frac{1}{3} \times \frac{1}{3} \sqrt{8} = \frac{1}{9} \sqrt{2}$	M1		For correct use of the sine rule in \triangle ADC
		$\rightarrow ADC$ 19.20		1	(sides must be numerical, angles may still be in
		$\rightarrow ADC = 18.3$	A1v		letters)
			A1	4	For a correct equation from their value in (i)
_				8	For correct answer, from correct working
5	(i)	$f(-1) = 0 \implies -1 - a + b = 0$	M1		For equating their attempt at $f(-1)$ to 0, or
			Al		equiv
		$\mathbf{t}(3) = 16 \implies 27 + \mathbf{3a} + \mathbf{b} = 16$	MI		For the correct (unsimplified) equation
			Al	F	For equating their attempt at $f(3)$ to 16, or
		Hence $a = -3, b = -2$	AI	5	equiv
					For both correct (unsimplified) equation
					For both correct values – must follow two
	(::)	f(2) = 9 6 2 - 0	D1		Ear the correct verification (from correct v
	(11)	$I(2) = \delta - 0 - 2 = 0$	ы		For the correct verification (from correct a &

4722

Mark Scheme

1				M1		<i>b</i>)
						For recognition or use of two linear factors, or
		Hence $f(x) = 0$	$(x+1)^2(x-2)$	A1	3	full division attempt by either $(x + 1)$ or $(x - 2)$
					8	For correct third factor (repeated) of $(x + 1)$,
6	(;)	6 - 3		MI		and full linear factorisation stated
0	(1)	$x^{\circ} + 3x^{\circ} + 3x$	$3 + \frac{1}{x^3}$			For any one (unsimplified) term correct
						For any other (unsimplified) term correct
				A1	4	For full, simplified, expansion correct
	(ii)	$\frac{1}{7}x^7 + \frac{3}{4}x^4$	$+3x - \frac{1}{2}x^{-2} + c$	M1		For any correct use of $\frac{x^{n+1}}{n+1}$
			-	A 1 1		For any two terms integrated correctly
				M1		For any correct use of x^{n+1} using a negative
				A1	4	index
				111,	8	For all terms integrated correctly (must have at
						least 4 terms, including at least 1 negative
						index)
7	(i)	(15×20)	1 25 2	M1		[No penalty for omission of $+c$ in this part]
'	(1)	$\log_5\left(\frac{15\times20}{12}\right)$ =	$= \log_5 25 = 2$	A1		For log 25 – must follow correct working only
				A1	3	For correct answer 2
	(ii)	Method A	$\frac{1}{2} v = 10^{2x}$	M1		For correct division of both sides by 3
			$\frac{3}{3}$, $\frac{1}{10}$	M1		For relevant use of $a = b^c \Leftrightarrow c = \log_b a$
			Hence $2x = \log_{10}(\frac{1}{3}y)$	A1		For correct equation involving logs to base 10
			i.e. $x = \frac{1}{2} \log_{10} \left(\frac{1}{3} y \right)$	A1	4	For correct answer for <i>x</i>
					-	
		Method B	$\frac{1}{3}y = 10^{2x}$	M1		For correct division of both sides by 3
			$\log \frac{1}{3} y = \log 10^{2x}$	M1		For taking logs of both sides
			$\log_{\frac{1}{3}} y = 2x \log_{10} 10$	A1		For correct linear equation involving logs
			i.e. $x = \frac{1}{2} \log_{10} \left(\frac{1}{2} v \right)$	A1	4	For correct answer for <i>x</i>
			2 210 (3 2)			
		Method C	$y = 2 \times 10^{2x} \implies \log y = \log 2 \times 10^{2x}$	M1		For introducing logs throughout
		Wiedhod C	$y = 3 \times 10^{\circ} \implies \log y = \log 3 \times 10^{\circ}$	A1		For correct RHS log 3 + log 10^{2x}
			$\log y = \log 3 + \log 10^{2x}$	M1		For connect we of $\log s^{b} + \log 10$
			$\log y = \log 3 + \log 10$	A 1	4	For contect use of $\log a = b \log a$
			$\log y = \log 3 + 2x \log 10$	AI	4	For correct answer for <i>x</i>
		Mut ID	i.e. $x = \frac{1}{2} \log_{10}(\frac{1}{3}y)$			
		Method D		M1		For substituting for y, and separating RHS into
			$x = a \log(b \times 3 \times 10^{2x})$	M1		at least 2 terms For attempting values for <i>a</i> and <i>b</i>
			$x = a\log 3b + a\log 10^{2x}$	Λ 1		For obtaining $a = \frac{1}{2}$
			$x = 2ax\log 10 \Rightarrow 2a = 1 \Rightarrow a = \frac{1}{2}$	AI		For obtaining $h = \frac{1}{2}$
			C 1 1 1 1 1 1 1 1 1 1	A1	4	For obtaining $v = 7_3$
			$a \log 3b = 0 \Longrightarrow 3b = 1 \Longrightarrow b = \frac{1}{3}$		7	
8	(i)	100 000 x 0.9	$^{3} = 72900$	M1		For relevant use of ar^3 or equiv
	<i>/···</i>	100.000 0.0	× 5000	Al	2	For the correct answer 72900
1	(11)	100 000 X 0.9	r = 5000	BI		For a correct equation or inequality
		So $r = 28 4$ 2	7 = 10g 0.03 8 or 29: or $n = 29.4$ 29 or 30			For correct solution for their index – allow
		$50 \ x = 20.4, 2$	20 or 27, or n = 27.7, 27 or 50	111		integer values either side
		i.e. 30 th year /	/ 30 years / year is 2030	A1√	4	For correctly linking their index to date or

4722

Mark Scheme

						number of years
	(iii)	Total is	$\frac{100000(1-0.9^{30})}{1-0.9} = 957609$	M1		For relevant use of $\frac{a(1-r^n)}{1-r}$
				A1v	1	For correct (unsimplified) statement for their
						integer <i>n</i> (if no <i>n</i> stated then use their year –
				A1	3	2000)
					9	For answer 958000 or better, including decimal
9	(a)	(i)	$\cos \frac{1}{6}\pi = \frac{1}{2}\sqrt{3}$	B1		For any correct exact value
			$\tan \frac{1}{3}\pi = \sqrt{3}$	B1		For any correct exact value
			Hence $2 \cos \frac{1}{6} \pi = 2 \times \frac{1}{2} \sqrt{3} = \tan \frac{1}{3} \pi$	B1	3	For correct verification (allow via decimals)
		(ii)	A	B1		For correct sketch of either $y = \tan 2x$ or $y =$
				B1		2cosx
						For second correct sketch, with both graphs in
						proportion (ie 3 points of intersection)
				B1		
			$\frac{1}{2}$	B1	4	For one of $\pi/2$ or $5\pi/6$ (or equiv in degrees)
			Other roots are $\pi/2$ and $5\pi/6$			For second correct value, and no others in
						range
						$0 \le x \le \pi$
	(b)	(i)	0.05(0.1003 + 2(0.2027 + 0.3093) + 0.4228) = 0.0774	M1		State at least three of tan 0.1, tan 0.2, tan 0.3, tan 0.4
				M 1		Substitute numerical values (must be attempt at
						y-coords, not x-coords) into correct trapezium
						rule, with <i>h</i> consistent with number of strips
				A1		Obtain $0.05(\tan 0.1 + 2(\tan 0.2 + \tan 0.3) + \tan 0.3)$
						0.4) or equiv in decimals
						(SC – award A1 if values are now decimals
						from using degrees – gives final answer of
				A1	4	0.00131)
						Obtain 0.077 or better
		(ii)	Overestimate; tops of trapezia above the	B1	1	For correct statement and justification
			curve or equiv		12	