(i)(ii)	$u_{1}=2, u_{2}=5, u_{3}=8$ The sequence is an Arithmetic Progression	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \\ \hline \end{array}$	For the correct value of u_{1} For both correct values of u_{2} and u_{3} For a correct statement (any mention of arithmetic)
	$\frac{1}{2} \times 100 \times(2 \times 2+99 \times 3)=15050$	$\begin{array}{\|cc\|} \hline \text { M1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & 3 \\ & 6 \\ \hline \end{array}$	For correct interpretation of Sigma notationie finding the sum of an AP or GP For use of correct $\frac{1}{2} n(2 a+(n-1) d)$, or equiv, with $n=100$ and $a \& d$ not both $=1$ For correct value 15050
$\begin{array}{lc}2 & \text { (i) } \\ & \text { (ii) } \\ & \text { (iif) }\end{array}$	$r \theta=12, \frac{1}{2} r^{2} \theta=36$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	For $r \theta=12$ stated correctly at any point For $\frac{1}{2} r^{2} \theta=36$ stated correctly at any point
	$\frac{1}{2} r \times 12=36 \Rightarrow r=6$ Hence $\theta=2$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	For showing given value correctly For correct value 2 (or 0.637π)
	Segment area is $36-\frac{1}{2} \times 6^{2} \times \sin 2=19.6 \mathrm{~cm}^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { M1dep* } \\ & \text { A1 } 3 \\ & \text { A1 } \\ & \\ & \hline \end{aligned}$	For use of $\Delta=\frac{1}{2} a b \sin C$, or equivalent For attempt at $36-\Delta$ For correct value (rounding to) 19.6
	$\begin{aligned} & \int\left(2 x^{2}+7 x+3\right) \mathrm{d} x \\ & =\frac{2}{3} x^{3}+\frac{7}{2} x^{2}+3 x+c \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { B1 } & 4\end{array}$	For expanding and integration attempt For at least one term correct For all three terms correct For addition of arbitrary constant, and no \int or $\mathrm{d} x$
	$\begin{aligned} & {\left[2 x^{\frac{1}{2}}\right]^{6}} \\ & =6 \end{aligned}$	M1 M1 A1 3 7	For integral of the form $k x^{\frac{1}{2}}$ For evaluating at least $\mathrm{F}(9)$, following attempt at integration For final answer of 6 only
$\begin{array}{ll}4 & \text { (i) } \\ & \\ \\ & \\ \text { (ii) }\end{array}$	$\cos B C A=\frac{5^{2}+6^{2}-9^{2}}{2 \times 5 \times 6}=-\frac{1}{3}$ So $\sin B C A=\frac{2}{3} \sqrt{2} \approx 0.9428 \ldots$	M1 M1 A1 B1 M1 M1 A1 B1 4	For relevant use of the correct cosine formula For attempt to rearrange correct formula For obtaining the given value correctly For correct answer for sin BCA in any form OR For substituting $\cos B C A=-1 / 3$ For attempt at evaluation For full verification For correct answer for sin BCA in any form
	Angles $B C A$ and $C A D$ are equal $\begin{aligned} & \text { So }_{\sin } A D C=\frac{5}{15} \sin C A D=\frac{1}{3} \times \frac{1}{3} \sqrt{8}=\frac{2}{9} \sqrt{2} \\ & \Rightarrow A D C=18.3^{\circ} \end{aligned}$	$\begin{array}{\|lll} \hline \text { B1 } & \\ \text { M1 } & \\ & & \\ \text { A1 } \sqrt{ } & \\ \text { A1 } & 4 \\ & \mathbf{8} \\ \hline \end{array}$	For stating, using or implying the equal angles For correct use of the sine rule in Δ ADC (sides must be numerical, angles may still be in letters) For a correct equation from their value in (i) For correct answer, from correct working
5 (i)	$\begin{aligned} & \mathrm{f}(-1)=0 \Rightarrow-1-a+b=0 \\ & \mathrm{f}(3)=16 \Rightarrow 27+3 a+b=16 \end{aligned}$ Hence $a=-3, b=-2$	$\begin{array}{\|lr\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 5 \\ \hline \end{array}$	For equating their attempt at $\mathrm{f}(-1)$ to 0 , or equiv For the correct (unsimplified) equation For equating their attempt at $f(3)$ to 16 , or equiv For the correct (unsimplified) equation For both correct values - must follow two correct equations
	$\mathrm{f}(2)=8-6-2=0$	B1	

