Mark Scheme 4736 June 2005

-			1	
1	(a) (i)	8 7 5 4 3 3 3 3 2 2	M1	For sorting the list into decreasing order
		First bag 8 2	M1	For trying to apply first-fit to their list
		Second bag 7 3 Third bag 5 4		
		Fourth bag 3 3 3		
		Fifth bag 2	A1	For a completely correct solution
	(ii)	A packing that uses fewer bags could be		
		First hag 8 2	R 1	For any valid packing into four bags (may be as
		Second bag 7 3	DI	an incorrect answer to using algorithm, need not
		Third bag 5 3 2		be packed in this order)
		Fourth bag 4 3 3		
	(b)	$(500)^3$		For scaling 4 seconds by 5^3 or for an equivalent
		$\left(\frac{300}{100}\right) \times 4 \text{ or } 125000000 \times 0.000004$	M1	valid and complete method. Condone minor
		= 500	A1	For 500 or 500 seconds or 500 s.
				6 Accept 8 minutes 20 seconds or 8.3 minutes
2	(i)	eg •	B1	For any <u>simple</u> graph with 4 vertices and 5 arcs
				Vertices need not be labelled
				Need not be planar
		• •		
	(ii)	The sum of the orders of the vertices is twice the		Or start from a null graph and successively add in
		number of arcs, and hence is even.	M1	arcs. Each time an arc is added the number of odd
		Hence the sum of the odd orders must be even		vertices is either unchanged or it increases or
		and so there must be an even number of odd	A1	decreases by 2.
	(iii)	5 arcs \Rightarrow sum of orders of vertices = 10	M1	So the number of our nodes is always even
		Simple graph connecting vertices so each vertex		
		has order 1, 2 or 3 1 + 3 + 3 + 3 = 10 or $2 + 2 + 3 + 3 = 10$		
		1 + 5 + 5 + 5 = 10 01 2 + 2 + 5 + 5 = 10		
		But $1 + 3 + 3 + 3$ is not possible since if three vertices have order 3 they are all connected to the	A1	Explaining why $1 + 3 + 3 + 3$ is not possible.
		fourth vertex so it also has order 3.		
		With $2 + 2 + 2 + 2$ the two vertices of order 2	A 1	Evaluining why there is only one graph with
		cannot be adjacent, since otherwise two arcs	AI	nodes of orders 2, 2, 3, 3.
		connect the other two vertices so not simple.		
		Hence only one possible graph.		
				6
3	(i)		M1	For a correct tree (labels not required)
		$C \longrightarrow D$	1111	For a confect tree (labels not required)
		E		
		$G \bullet H$		
		Kruskal: DF, CD, BD and EF, FH, AC, EG	A1	For a valid order (using Prim or Kruskal)
		40	D 1	Earland 40
	(ii)	40 A C D F E G H B A	<u>Ы</u> М1	For length = 40 At getting at least as far as A C D F E
				(or shown on a diagram)

		A1	For a correct cycle, ending back at A
			(if shown on a diagram, needs direction shown)
(iii)		
(A) ACEG and ABGH	B1	For both, vertices in any order
(B) 5	B1	For 5
(C	b) ABCD	B1	For ABCD, vertices in any order
		8	
4 (i)	-17-		Answer should be on insert sheet
	A 1 0 7 3 8 F 4 14		
	$\frac{1}{6}$ 7/ $\frac{1}{13}$ 5 8	N/1	Example D'ile (et al. et al. et al.
	1/18 10	IVI I	For using Dijkstra's algorithm undefing at <i>E</i> and <i>E</i> (avan if incomplete)
			– updating at <i>L</i> and <i>F</i> (even if incomplete)
	$B \begin{bmatrix} 2 & 6 \end{bmatrix} F \begin{bmatrix} 6 & 19 \end{bmatrix} G \begin{bmatrix} 7 & 22 \end{bmatrix}$		
		A1	For all permanent labels correct
	6 24 21 19 22	111	
	<u> </u>		
	D 5 16	B1	For valid order of assigning permanent labels
	16		
	10		
	Vertex $B C D E F G$		
	Length 6 8 16 14 19 22	D 1	
		RI	For copying their permanent labels, or correct
	A - C - E - G	D1	Connect on one on los
(**)	The only odd nodes are A and Γ	BI M1	Correct answer only
(11)	Shortest path from A to E has length 10 km	IVI I	For identifying A and F or value 19 or their 19
	120 ± 19	M1	For $120 \pm \text{their } 19$
	-139 km		For 139 (cao)
<i>(</i> iii	Need A and G odd and all other nodes even	M1	For identifying F and G or value 10 as only extra
(111	so need to connect F to $G = 10 \text{ km}$		r or raenarying r and o or variae ro as only exita
	120 + 10 = 130 km	A1	For 130 (cao)
		10	
		=•	

5	(i)	X N T S 0 0 0		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 M1	For initial pass through step 3 correct For updating each of <i>N</i> , <i>T</i> and <i>S</i> correctly
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	For final values of <i>N</i> , <i>T</i> and <i>S</i> correct
		M = 4.8 $D = 1.6$	B1 B1	For 4.8 (ft their $T \div N$) For 1.6 (ft their $\sqrt{\{(S \div N) - (M^2)\}}$
	(ii)	15 additions and 5 multiplications 20 + 5 = 25	B1 B1	For 'their 20' + 5
	(iii)	3n+n+5	M1	For any function of <i>n</i> that gives their answer from (ii) when $n = 5$
	(iv)	=4n+5 (5000 ÷ 1000) × 2 = 10 seconds	A1 B1	For any expression that simplifies to $4n + 5$ <u>Or</u> 2 ÷ 4005 × 20005 = 9.99 <u>~</u> 10 seconds
6	(i)		10	
Ū	(1)	P x y z s t u	M1	For overall structure correct, including three slack
			A1	Variables For a correct initial tableau, with no extra
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		constraints added. Accept equivalent forms.
		0 -6 4 3 0 0 1 48		
	(ii)	Pivot on 10 in x column 40 row	M1	For the correct pivot choice for their tableau
		1 0 -2 16 1.5 0 0 60	A1	For dealing with the pivot row correctly
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	For dealing with the other rows correctly
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	For a correct tableau
		x = 4, y = 0, z = 0 P = 60	B1 B1	For reading off x, y and z from their tableau For reading off P from their tableau
	(iii)	Pivot on 10 in y column	M1	For the correct pivot choice for their tableau
		1 0 0 16.2 1.3 0.2 0 66.4	A1	For dealing with the pivot row correctly
		0 1 0 0.84 0.06 0.04 0 5.28	M1	For dealing with the other rows correctly
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	For a correct tableau
		0 0 0 1.07 0.70 -0.10 1 00.00		
		x = 5.28, y = 3.2, z = 0 P = 66.4	B1	For the correct values of x , y and z at optimum
		1 - 00.7	B1 14	For the correct value of <i>P</i> at optimum
L				

7	(i)	Minimise $70x + 80y + 50z$	B1	For 'minimise' a (non-zero) multiple of $7x+8y+5z$
		'No more than twice as many packs of type <i>Y</i> as packs of type <i>X</i> '	B1	For identifying this constraint from the list, or equivalent
		Other constraints $x \ge 200, \ 0 \le z \le 50$ $y \ge z$ $x + z \ge 220$ $x + y \ge 300$	B1 B1 B1 B1	Ignore extra 'constraints' unless contradictions For boundary constraints on x and z For this, or an equivalent correct answer For this, or an equivalent correct answer For this, or an equivalent correct answer Use of strict inequalities – penalise first time only
	(ii) (a)	Minimise $70x + 80y (+ 2500)$ (or scaled through) Subject to $y \le 2x$ x > 200	M1	For replacing z by 50
		$\begin{array}{c} x \ge 200 \\ y \ge 50 \\ x + y > 300 \end{array}$	A1	For their $y \ge 50$
		500 TV	M1	For at least two appropriate lines drawn on a graph with plausibly scaled axes.
		400 300 feasible region	M1	For boundary lines drawn correctly (follow through their equations provided there are at least two horizontal or vertical lines and at least two lines that 'slope')
			A1	Feasible region correctly identified (correct answer only, not follow through)
	(b)	(200, 400) (200, 100) (250, 50)	M1	For reading off or calculating at least one of their vertices
		(200, 400), (200, 100), (250, 50)	A1	For getting these three vertices correct with no extras
		(200, 100) gives $70x + 80y = 22000 \text{ (£245)}$ (250, 50) gives $70x + 80y = 21500 \text{ (£240)}$ Cost is minimised when $x = 250$, $y = 50$	M1	For calculating their cost at one of their vertices or using an appropriate line of constant cost
		$Cost = \pounds 240$	A1 B1	For identifying vertex (250, 50) For £240 or 24000 p (with units)
	(iii)	eg $x = 300, y = 0, z = 0$	M1	For finding a feasible point with $z < 50$
		only costs ±210	A1	For finding such a feasible point with a lower cost than that in (ii)(b) and showing that cost is lower.
			18	