Mark Scheme 4728 June 2005

1	(i)	<i>R</i> is smooth	B1	1	
. <u>.</u>					For resolving forces herizontelly to
	(ii)		M1		For resolving forces horizontally to obtain an equation in <i>T</i> (requires 3 relevant terms and at least one force resolved)
		$T + T\cos 60^{\circ} = 1.6\cos 45^{\circ}$	A1		,
		Tension is 0.754 N AG	A1	3	
	(iii)		M1		For resolving forces vertically
	(111)	$mg = T\sin 60^\circ + 1.6\sin 45^\circ$	A1 ft		to obtain an equation for <i>m</i> (requires 3 relevant terms with both <i>T</i> and the 1.6 N force resolved)
		$mg = 1 \sin 60^{\circ} + 1.0 \sin 43^{\circ}$,
		0.102	A 1	•	ft sin/cos mix from (ii)
		m = 0.182	A1	3	$SR m = T\sin 60^{\circ} + 1.6\sin 45^{\circ}$ M1
					m = 1.78
					B1
	$\langle \cdot \rangle$		N/1		For applying $F = ma$ (requires at least
2	(i)		M1 A1		For apprying $F = ma$ (requires at least ma, T and air resistance in linear combination in at least one equation). At least one equation with not more than one error.
		0.2g + T - 0.4 = 0.2a	A1		SR $0.2g - T - 0.4 = 0.2a$
		$\begin{array}{c} 0.2g + T - 0.4 = 0.2d \\ 0.3g - T - 0.25 = 0.3a \end{array}$	A1 A1	4	and $0.3g + T - 0.25 = 0.3a$ B1
	(ii)		M1		For obtaining an equation in T or a only, either by eliminating a or T from the equations in (i) or by applying $F = ma$ to the complete system
		0.5g - 0.65 = 0.5a or $5T - 0.7 = 0$	A1 ft		For a correct equation in a only or T only ft opposite direction of T only
		a = 8.5 and $T = 0.14$ (positive only)	A1	3	

3	(i)	Momentum before= $0.1 \times 4 - 0.2 \times 3$	B1		or Loss by $P = 0.1 \times 4 + 0.1u$
		Momentum after = -0.1u + 0.2(3.5 - u)	B1		or Gain by $Q = 0.2(3.5 - u) + 0.2 \times 3$
		$0.1 \times 4 - 0.2 \times 3 = -0.1u + 0.2(3.5 - u)$	M1		For using the principle of conservation of momentum
		u = 3 (positive value only)	A1 4	4	
					SR If mgv used for momentum instead of mv, then u = 3 B1
	(ii)		M1		For using $v^2 = u^2 + 2as$ with $v = 0$ (either case) or equivalent equations
		$0 = 3^2 - 10s_1$ and $0 = 0.5^2 - 10s_2$	A1 ft		ft value of <i>u</i> from (i)
		0.9 + 0.025	M1		For using $PQ = s_1 + s_2$
		Distance is 0.925 m cao	A1 4	4	

			1.61	
4	(i) a		M1	For using $s = ut + \frac{1}{2} at^2$ for the first stage
			A1	first stage
		$2 = 0.8u + \frac{1}{2} a(0.8)^2$	AI	
			M1	For obtaining another
				equation in u and a with
		$8 = 2u + \frac{1}{2}a2^2$ or		relevant values of velocity,
		$6 = 1.2(u + 0.8a) + \frac{1}{2}a(1.2)^2$ or	A1	
		$6 = 1.2(2 \times 2 \div 0.8 - u) + \frac{1}{2} a(1.2)^2$		displacement and time
			M1	For eliminating <i>a</i> or <i>u</i>
		u = 1.5	A1	
		Acceleration is 2.5 ms^{-2}	A1 7	
	(i) β	[M1	For using $s = vt - \frac{1}{2} at^2$ for
	(-) P			the first stage
		$2 = 0.8v - \frac{1}{2} a(0.8)^2$	A1	
		2 = 0.07 72 u(0.0)	M1	For using $s = ut + \frac{1}{2} at^2$ for
			1411	_
		$(1, 2, 1)$ $(1, 2)^2$	A 1	the second stage
		$6 = 1.2v + \frac{1}{2}a(1.2)^2$	A1	
			M1	For obtaining values of <i>a</i>
				and <i>v</i> and using $v = u + at$
				for first stage to find <i>u</i>
		Acceleration is 2.5 ms ⁻² ($v =$	A1	
		3.5)	A1 7	
		u = 1.5		
	(i) y	$2\div 0.8 \text{ ms}^{-1}$ and $6\div 1.2 \text{ ms}^{-1}$	M1	For finding average speeds
	(1) }	2.0.0 mb und 0.1.2 mb	1111	in both intervals
		$= 2.5 \text{ ms}^{-1} \text{ and } 5 \text{ms}^{-1}$	A1	in oour micryais
			AI	
			D1	
		$t_1 = 0.4$ and $t_2 = (0.8 +) 0.6$	B1	For finding mid-interval
				times
		5 = 2.5 + a (1.4 - 0.4)	M1	
				For using $v = u + at$
				between
		Acceleration is 2.5 ms^{-2}	A1	the mid-interval times
L	L		1	

	$2.5 = u + 2.5 \ge 0.4$ or $5 = u + 2.5 \ge 1.4$	M1		
	<i>u</i> = 1.5	A1	7	For using $v = u + at$ between t = 0 and one of the mid- interval times
(ii)	$2.5 = 9.8 \sin \alpha$ $\alpha = 14.8^{\circ}$	M1 A1ft	2	For using $(m)a = (m)g\sin\alpha$ ft value of acceleration

5	(i)		M1		For resolving forces on <i>A</i> vertically (3 terms)
		$F = 2 + 7\cos\alpha$	A1		
		F = 3.96 (may be implied)	A1		
		$N = 7 \sin \alpha$	M1		For resolving forces on A
		N = 6.72 (may be implied)	A1		horizontally (2 terms)
		$3.96 = \mu 6.72$ (may be implied)	M1		For using $F = \mu N$
		Coefficient is 0.589 or 33/56 cao	A1	7	<u> </u>
	(ii)	$T\cos\beta = 7\cos\alpha$	M1		For resolving forces at <i>P</i> vertically (2 terms)
		$T\cos\beta = 7 \times 0.28 \ (= 1.96 \ \text{AG})$	A1	2	
	(iii)		M 1		For resolving forces on B
					vertically (2 terms)
		$T\cos\beta - mg = 0$	A1		
		Mass is 0.2 kg	A1	3	

6	(i)(a)	$V = P\cos 20^\circ - 0.04g$ $P = 0.417$	B1 M1		For setting $V = 0$
		r = 0.417	A1	3	
	(i)(b)	$R = P \sin 20^{\circ}$	M1		For using R = horizontal component of P
		Magnitude is 0.143 N	A1ft	2	ft value of P
	(i)(c)	0.143 = 0.04a	M1		For using Newton's second law
		Acceleration is 3.57 ms ⁻²	A1ft	2	ft magnitude of the resultant
	(ii)	$R^2 = 0.08^2 + (0.04g)^2$	M1		For using $R^2 = P^2 + W^2$
		Magnitude is 0.400 N (or 0.40 or	A1		
		0.4) $\tan \theta = \pm -0.04 g / 0.08 \text{ or}$	M1		For using $\tan \theta = Y/X$ or
		$\tan(90^{\circ} - \theta) = +/-0.08/0.04g$			$\tan(90^\circ - \theta) = X/Y$
		Angle made with horizontal is 78.5° or 1.37 radians, or angle made with vertical is 11.5° or 0.201 radians	A1		
		Downwards or below	B1	5	Direction may alternatively be
		horizontal			shown clearly on a diagram or given as a bearing

7	(i)		M1		For using the idea that the area of the quadrilateral represents distance
		$\frac{1}{2}200 \times 16 + 300 \times \frac{1}{2}(16 + 25)$			
		+	A1		
		$\frac{1}{2}$ 100×25 (=1600 + 6150 +			
		1250)	A1	3	
		Distance is 9000m			
	(ii)	a = (0 - 25)/(600 - 500)	M1		For using the idea that gradient
					$(=$ vel \div time) represents
					acceleration
		Deceleration is 0.25 ms^{-2}	A1	2	Or for using $v = u + at$
					Allow acceleration = -0.25 ms^{-2}
	(iii)	Acceleration is $(1200t - 3t^2) \times 10^{-6}$	M1 A1	•	For using $a(t) = \dot{v}(t)$
	()	0.25 – 0.2475	M1	2	For using 'ans(ii) $- a_0(550) $ '
	(iv)	Amount is $\pm - 0.0025 \text{ ms}^{-2}$	Alft	2	ft ans(ii) only
	(v)	$1200t - 3t^2 = 0$	M1		For solving $a_Q(t) = 0$ or for finding $a_Q(400)$
		t = (0 or) 400 AG	A1	2	Or for obtaining $a_Q(400) = 0$
	(vi)		M1		For correct method for $s_P(400)$
		$\frac{1}{2}200 \times 16 + 200 \times \frac{1}{2}(16 + 22)$	A1		ſ.
		$s_0(t) = (200t^3 - t^4/4) \times 10^{-6} (+C)$	M1		For using $s_Q(t) = \int v_Q dt$
		6400 - 5400	A1 M1		For using correct limits and
			M1		finding
		Distance is 1000 m			$ s_{\rm Q}(400) - s_{\rm P}(400) $
			A1	6	