Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding

$1 \text { (i) } \begin{aligned} & \delta d^{2} \\ & =14 \\ & 1-\frac{6 \times \text { their } 14}{5 \times(25-1)} \\ & =0.3 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	Subtr \& squ 5 pairs \& add
(ii) Reverse rankings attempted 25341	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$	3 correct T \& I to make $\Sigma d^{2}=40: 2 \mathrm{mks}$ or 0 mks
	6	
$\begin{aligned} & 2 \text { (i) (a) Geo(0.14) stated in (a) or (b) } \\ & \qquad \begin{array}{l} (0.86)^{4} \times 0.14 \\ =0.0766(3 \mathrm{sfs}) \end{array} \end{aligned}$	B1 M1 A1 	or $0.86^{n} \times 0.14$ or $0.14^{n} \times 0.86$ in (a) or $\geq \mathrm{M} 1$ in (b) or $\mathrm{Geo}(0.86)$ stated in (a) or (b) No wking: 0.077: B1M1A0
$\begin{aligned} & \text { (b) } 1-0.86^{7} \\ & \text { or } 0.14+0.86 \times 0.14 \ldots+0.86^{6} \times 0.14 \\ & =0.652(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \text { M2 } & \\ \text { A1 } & 3 \end{array}$	$1-0.86^{8}$: M1 $+8^{\text {th }}$ term ($r=7$ or 0) or 1 missing term: M1
	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	
	8	
	B1 M1 A1 3	Or implied by use of tables or $0.35^{a} \times 0.65^{b}(a+b=16)$ in (a) or (b) Allow $1-0.9329$ or 0.0671 Or complete method using formula, $\mathrm{P}(r=8-16$ or $9-16)$ or $1-\mathrm{P}(r=0-7$ or $0-8)$
$\begin{aligned} \text { (b) } & 0.9771-0.1339 \\ & =0.843(3 \mathrm{sfs}) \end{aligned}$	M1 $\text { A1......... } 2$	Allow 0.9771-0.2892 Or complete method using formula ($r=4-9$)
$\text { (ii) } \begin{aligned} & C_{6}(0.38){ }^{6}(0.62)^{10} \\ = & 0.202(3 \mathrm{sfs}) \end{aligned}$	M2 A1 3	Absent or incorr coeff : M1 or ${ }^{16} \mathrm{C}_{6}(0.38)^{10}(0.62)^{6}: \quad$ M1
	8	
4 (i) Correct subst in \geq two S formulae $14464.1-\frac{265 \times 274.6}{5}$	M1	Any correct version or $14464.1-5 \times 53 \times 54.92$
$\begin{aligned} & \sqrt{\left(14176.54-\frac{265^{2}}{5}\right)\left(15162.22-\frac{274.6^{2}}{5}\right)} \\ & ==0.868(3 \mathrm{sfs}) \end{aligned}$	M1 A1 3	$\begin{aligned} & \sqrt{\left(14176.54-5 \times 53^{2}\right)\left(15162.22-5 \times 54.92^{2}\right)} \\ & \text { or fully correct method with }(x-\bar{x})^{2} \text { etc } \end{aligned}$
(ii) No difference oe	B1 1	Or slightly diff or more acc because of rounding errors when mult by 2.54 oe Not just "more accurate"
(iii)Choose y on x stated	B1ind	or implied, eg by $S_{x y} / S_{x x}$ or $y=a x+b$

$\begin{aligned} & 7 \text { (i) }{ }^{18} C_{7} \text { or }\left.{ }^{181}\right\|_{(111 \times 71)} \\ & \hdashline 31824 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \hline \text { A1 } & 2 \\ \hline \end{array}$	cao
$\begin{aligned} & \text { (ii) }{ }^{5} C_{2} \times{ }^{6} C_{2} \times{ }^{7} C_{3} \text { or } 5250 \\ & \div+31824 \\ & =875 / 5304 \text { or } 5250 / 31824 \text { oe } \\ & \text { or } 0.165(3 \mathrm{sfs}) \end{aligned}$	M2 M1 A1 4	M1: 1 correct ${ }^{n} \bar{C}_{r}$ or mult any three ${ }^{n} C_{r} \mathrm{~S}$ Divide by their (i). Indep If cancelled, must be clear have $\div 31824$ $\frac{5 \times 4 \times 6 \times 5 \times 7 \times 6 \times 5 \times 7!}{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 2!\times 3!}$ Correct 7 fractions mult: M1 $\text { x7!: } \quad \text { M1 }\}$ $\div\left(2!^{2} \times 3!\right)$: M1 \} both dep any 7 fracts mult
$\begin{aligned} & \text { (iii) }{ }^{7}{ }^{7} C_{5} \times{ }^{11} C_{2} \text { or } 1155 \\ & \div 31824 \\ & =385 / 10608 \text { or } 1155 / 31824 \text { oe } \\ & =\quad \text { or } 0.0363(3 \mathrm{sfs}) \end{aligned}$	M1 M1 M1 A1	Seen or implied, eg by combs or list Divide by their (i). Indep $\frac{7 \times 6 \times 5 \times 4 \times 3 \times 11 \times 10 \times 7!}{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 5!\times 2!}$ Correct 7 fractions mult: M1 $\text { x } 7!: \quad \text { M1 }\}$ \div (5! x 2!): M1 \} both dep any 7 fracts mult
$\begin{aligned} & \text { (iv) }(2,2,3) \text { or }(2,3,2) \text { or }(3,2,2) \\ & { }^{5} C_{2} \times{ }^{6} C_{2} \times{ }^{7} C_{3}{ }^{5}{ }^{5} C_{2} \times{ }^{6} C_{3} \times{ }^{7} C_{2} \\ & +{ }^{5} C_{3} \times{ }^{6} C_{2} \times C^{7} C_{2} \\ & (\div 31824) \\ & \quad=175 / 442 \text { or } 12600 / 31824 \text { oe } \\ & \text { or } 0.396(3 \mathrm{sfs}) \end{aligned}$		Any one. Seen or implied eg by combs M1: one correct product. NOT ${ }^{5} C_{2} \times{ }^{6} C_{2} \times{ }^{7} C_{2}$ (No mk for $\div 31824$) Equiv method; ((iii)+etc) can imply M mks $\frac{5 \times 4 \times 6 \times 5 \times 7 \times 6 \times 7!}{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 2{ }^{2} \times 3!}$ Correct 6 fractions mult: M1 x 7! : M1 $\}$ $\div\left(2!^{2} \times 3!\right):$ M1 \} both dep any 6 fracts mult Complement method: Triple with total 7, incl at least one 0 or 1 or $(0,7)$ or $(1,6)$ seen or implied: M1 One correct prod seen, eg ${ }^{5} \mathrm{C}_{0} \mathrm{x}^{6} \mathrm{C}_{2} \mathrm{x}^{7} \mathrm{C}_{5} \quad \mathrm{M} 1$ Full correct method, incl " 1 - "
	14	

