

GCE Edexcel GCE Mathematics Core Mathematics C1 (6663)

June 2006

Mark Scheme (Results)

advancing learning, changing lives

Mathematics

Edexcel GCE

edexcel

June 2006 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks
1.	$\frac{6x^3}{3} + 2x + \frac{x^{\frac{1}{2}}}{\frac{1}{2}} (+c)$	M1
		A1
	$= 2x^3 + 2x + 2x^{\frac{1}{2}}$	A1
	+c	B1
		4
	M1 for some attempt to integrate $x^n \to x^{n+1}$	
	1 st A1 for either $\frac{6}{3}x^3$ or $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or better	
	2^{nd} A1 for all terms in x correct. Allow $2\sqrt{x}$ and $2x^1$.	
	B1 for $+ c$, when first seen with a changed expression.	

Question number	Scheme	Marks
2.	Critical Values	
	$(x \pm a)(x \pm b)$ with $ab = 18$ or $x = \frac{7 \pm \sqrt{49 - 72}}{2}$ or $(x - \frac{7}{2})^2 \pm (\frac{7}{2})^2 - 18$	M1
	$(x-9)(x+2)$ or $x = \frac{7\pm 11}{2}$ or $x = \frac{7}{2} \pm \frac{11}{2}$	A1
	<u>Solving Inequality</u> $x > 9$ or $x < -2$ Choosing "outside"	M1
		A1 4
	1^{st} M1For attempting to find critical values. Factors alone are OK for M1, $x =$ appearing somewhere for the for written for completing the square 1^{st} A1.Factors alone are OK . Formula or completing the square need x	
	2 nd M1 For choosing outside region. Can f.t. their critical values. They must have two different critical values. -2 > x > 9 is M1A0 but ignore if it follows a correct version	
	-2 < x < 9 is M0A0 whatever the diagram looks like. $2^{nd} A1$ Use of \geq in final answer gets A0	

Question number		Scheme	Marks
3.	(a) y	↓ U shape touching <i>x</i> -axis	B1
	1	(-3,0)	B1
		(0,9)	B1
	-3	/9 x	(3)
	(b) y		N (1
		$\begin{array}{ c c c c } & \text{Translated parallel to y-axis up} \\ \hline 9+k & (0, 9+k) \end{array}$	M1
		$\int 9+k \qquad (0, 9+k)$	B1f.t.
			(2)
		► x	5
(a)	2 nd B1	They can score this even if other intersections with the <i>x</i> -axis are given.	
	2 nd B1 & 3 rd B1	The -3 and 9 can appear on the sketch as shown	
(b)	M1	Follow their curve in (a) up only.	
		If it is not obvious do not give it. e.g. if it cuts y-axis in (a)	
		but doesn't in (b) then it is M0.	
	B1f.t.	Follow through their 9	

Question number		Scheme		
4. (a)	$a_2 = 4$ $a_3 = 3 \times a_2 - 5$	$a_2 = 4$ $a_3 = 3 \times a_2 - 5 = 7$		
(b)	$a_4 = 3a_3 - 5(=$	$a_4 = 3a_3 - 5(=16)$ and $a_5 = 3a_4 - 5(=43)$		
	3+4+7+1	6 + 43	M1	
	= 73		A1c.a.o.	(3)
				5
(a)	2 nd B1f.t.	Follow through their a_2 but it must be a value. $3 \times 4 - 5$ is B0 Give wherever it is first seen.		
(b)	1 st M1	For two further attempts to use of $a_{n+1} = 3a_n - 5$, wherever seen. Condone arithmetic slips		
	2 nd M1	For attempting to add 5 relevant terms (i.e. terms derived from an attempt to use the recurrence formula) or an expression. Follow through their values for $a_2 - a_5$		
		Use of formulae for arithmetic series is M0A0 but could get 1^{st} M1 if a_4 and a_5 are correctly attempted.		

Question number		Scheme		Marks	
5. (a)	$(y = x^4 + 6x^{\frac{1}{2}})$	$(y = x^4 + 6x^{\frac{1}{2}} \Rightarrow y' =) 4x^3 + 3x^{-\frac{1}{2}}$ or $4x^3 + \frac{3}{\sqrt{x}}$			
(b)	$\left(x+4\right)^2 = x^2 +$	-8x + 16		M1	
	$\frac{\left(x+4\right)^2}{x} = x + \frac{1}{x}$	$8 + 16x^{-1}$	(allow 4+4 for 8)	A1	
	$(y = \frac{\left(x+4\right)^2}{x}$	$\Rightarrow y' =) 1 - 16x^{-2} \qquad \text{o.e}$	». 	M1A1 (4) 7	
(a)	M1	For some attempt to diffe	eventiate $x^n \to x^{n-1}$	I	
	1 st A1	For one correct term as p	rinted.		
	2 nd A1	For both terms correct as	printed.		
		$4x^3 + 3x^{-\frac{1}{2}} + c$ scores N	1 1A1A0		
(b)	1 st M1	For attempt to expand $(x$	$(+4)^2$, must have x^2 , x , x^0 terms and at lea	st 2 correct	
		e.g. $x^2 + 8x + 8$ or $x^2 + 2x + 16$			
	1 st A1	Correct expression for $\frac{(\lambda)}{2}$	$\frac{(x+4)^2}{x}$. As printed but allow $\frac{16}{x}$ and $8x^0$		
	2 nd M1	For some correct differen	tiation, any term. Can follow through the	ir simplification.	
		N.B. $\frac{x^2 + 8x + 16}{x}$ giving	g rise to $(2x + 8)/1$ is M0A0		
ALT	Product or Qu	otient rule (If in doubt sen	d to review)		
	M2	For correct use of produc	t or quotient rule. Apply usual rules on fo	ormulae.	
	1 st A1	For $\frac{2(x+4)}{x}$ or $\frac{2x(x+4)}{x^2}$	<u>4)</u>		
	2 nd A1	for $-\frac{(x+4)^2}{x^2}$			

Question number	Scheme	Mark	5
6. (a)	$16+4\sqrt{3}-4\sqrt{3}-(\sqrt{3})^{2} \text{ or } 16-3$ = 13 $\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$ $= \frac{26(4-\sqrt{3})}{13} = \frac{8-2\sqrt{3}}{13} \text{ or } 8+(-2)\sqrt{3} \text{ or } a=8 \text{ and } b=-2$	M1 A1c.a.o	(2)
(b)	$\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$	M1	
	$= \frac{26(4-\sqrt{3})}{13} = \frac{8-2\sqrt{3}}{13} \text{or} 8+(-2)\sqrt{3} \text{or} a=8 \text{ and } b=-2$	A1	(2) 4
(a)	M1 For 4 terms, at least 3 correct e.g. $8 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^2$ or $16 \pm 8\sqrt{3} - (\sqrt{3})^2$ or $16 + 3$ 4^2 instead of 16 is OK $(4 + \sqrt{3})(4 + \sqrt{3})$ scores M0A0		
(b)	M1 For a correct attempt to rationalise the denominator Can be implied NB $\frac{-4+\sqrt{3}}{-4+\sqrt{3}}$ is OK		

Question number		Scheme		
7.	a + (n	$a + (n-1)d = k \qquad \qquad k = 9 \text{ or } 11$		
	$(u_{11} =) a + 10$	d = 9		A1c.a.o.
	$\frac{n}{2}[2a$	$(n-1)d] = 77$ or $\frac{(a+l)}{2} \times n = 77$	<i>l</i> = 9 or 11	M1
	$(S_{11} =) \frac{11}{2}(2$	$(a+10d) = 77$ or $\frac{(a+9)}{2} \times 11 = 77$		A1
	$e.g. \ a+10d = a+5d =$	or $a + 9 = 14$		M1
		a = 5 and $d = 0.4$ or exact equivalent		A1 A1 7
	1 st M1	Use of u_n to form a linear equation in <i>a</i> and <i>d</i> . <i>a</i>	+ <i>nd</i> =9 is M0A0	
	1 st A1	For $a + 10d = 9$.		
	2 nd M1	Use of S_n to form an equation for a and d (LHS) of	or in <i>a</i> (RHS)	
	2 nd A1	A correct equation based on S_n .		
		For $1^{st} 2$ Ms they must write <i>n</i> or use $n = 11$.		
	3 rd M1	Solving (LHS simultaneously) or (RHS a linear e	quation in <i>a</i>)	
		Must lead to $a = \dots$ or $d = \dots$ and depends on one	e previous M	
	3 rd A1	for $a = 5$		
	4 th A1	for $d = 0.4$ (o.e.)		
	<u>ALT</u>	Uses $\frac{(a+l)}{2} \times n = 77$ to get $a = 5$, gets second and	third M1A1 i.e.	4/7
		Then uses $\frac{n}{2}[2a + (n-1)d] = 77$ to get <i>d</i> , gets 1 st	M1A1 and 4 th A1	
	<u>MR</u>	Consistent MR of 11 for 9 leading to $a = 3$, $d = 0$.	8 scores M1A0M	1A0M1A1ftA1ft

Question number		Marks	
8. (a)	$b^2 - 4ac = 4p^2 - 4(3p)$	M1, A1	
	or $(x+p)^2 - p^2 + (3p)^2$	$(p+4) = 0 \implies p^2 - 3p - 4 (= 0)$	
	(p-4)(p+1) = 0		M1
	$p = (-1)^{-1}$	or) 4	A1c.s.o. (4)
(b)	$x = \frac{-b}{2a}$ or $(x+p)(x)$	$(+ p) = 0 \implies x = \dots$	M1
		x (= -p) = -4	A1f.t. (2) 6
(a)	1 st M1 For use	of $b^2 - 4ac$ or a full attempt to complete the square leading	g to a 3TQ in p.
	May us	$b^2 = 4ac$. One of b or c must be correct.	
	1 st A1 For a co	prrect 3TQ in p. Condone missing "=0" but all 3 terms must	be on one side.
	2 nd M1 For atte	mpt to solve their 3TQ leading to $p = \dots$	
	$2^{nd} A1$ For $p =$	4 (ignore $p = -1$).	
	$b^2 = 4a$	<i>bc</i> leading to $p^2 = 4(3p+4)$ and then "spotting" $p = 4$ score	es 4/4.
(b)	M1 For a fu	ll method leading to a repeated root $x = \dots$	
	A1f.t. For $x =$	-4 (- their <i>p</i>)	
	Trial and Improvemen	<u>t</u>	
		stituting values of p into the equation and attempting to fact need to get to $p = 4$ or -1)	torize.
	A2c.s.o. Achieve	p = 4. Don't give without valid method being seen.	

Question number	Scheme	Marks
9. (a)	$f(x) = x[(x-6)(x-2)+3]$ or $x^3 - 6x^2 - 2x^2 + 12x + 3x = x($	M1
	$f(x) = x[(x-6)(x-2)+3] \text{ or } x^3 - 6x^2 - 2x^2 + 12x + 3x = x($ $f(x) = x(x^2 - 8x + 15) \qquad b = -8 \text{ or } c = 15$	A1
	both and $a = 1$	A1 (3)
(b)	$(x^2 - 8x + 15) = (x - 5)(x - 3)$	M1
	f(x) = x(x-5)(x-3)	A1 (2)
(c)		
	y Shape	B1
	their 3 <u>or</u> their 5	B1f.t.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1f.t. (3)
		8
(a)	M1 for a correct method to get the factor of x . x (as printed is the minimum.	
	$1^{\text{st}} \text{A1} \text{ for } b = -8 \text{ or } c = 15.$	
	-8 comes from -6-2 and must be coefficient of x , and 15 from $6x^2+3$ and m	ust have no xs.
	2^{nd} A1 for $a = 1, b = -8$ and $c = 15$. Must have $x(x^2 - 8x + 15)$.	
(b)	M1 for attempt to factorise their 3TQ from part (a).	
	A1 for all 3 terms correct. They must include the <i>x</i> .	
	For part (c) they must have <u>at most</u> 2 non-zero roots of their $f(x) = 0$ to ft the	
(c)	1 st B1 for correct shape (i.e. from bottom left to top right and two turning points.)	
	2 nd B1f.t. for crossing at their 3 or their 5 indicated on graph or in text.	
	3^{rd} B1f.t. if graph passes through (0, 0) [needn't be marked] and both their 3	3 and their 5.

Question number		Scheme		Marks	
10.(a)	$\mathbf{f}(x) = \frac{2x^2}{2} + \frac{3}{2}$	$\frac{3x^{-1}}{-1}(+c)$	$-\frac{3}{x}$ is OK	M1A1	
	$(3, 7\frac{1}{2})$ gives	$\frac{15}{2} = 9 - \frac{3}{3} + c$	3^2 or 3^{-1} are OK instead of 9 or $\frac{1}{3}$	M1A1f.t.	
		$c = -\frac{1}{2}$		A1	(5)
(b)	$f(-2) = 4 + \frac{3}{2}$	$-\frac{1}{2}$ (*)		B1c.s.o.	(1)
(c)	$m=-4+\frac{3}{4},$	= -3.25		M1,A1	
		angent is: $y - 5 = -3.25(x + 2)$	o.e.	M1 A1 (4)	
					10
(a)	1 st M1 1 st A1 2 nd M1 2 nd A1f.t.	substitution. No $+c$ is M0. So	etter. Ignore $(+c)$ here. Form an equation for <i>c</i> . There must be me changes in <i>x</i> terms of function ne follow through their integration. They	eeded.	
(b)	B1cso	If $(-2, 5)$ is used to find c in (a)	B0 here unless they verify $f(3)=7.5$.		
(c)	1 st M1	for attempting $m = f'(\pm 2)$			
	1 st A1	for $-\frac{13}{4}$ or -3.25			
	2 nd M1	for attempting equation of tang	gent at (-2, 5), f.t. their <i>m</i> , based on $\frac{d}{d}$	$\frac{\mathrm{d}y}{\mathrm{d}x}$.	
	2 nd A1	o.e. must have <i>a</i> , <i>b</i> and <i>c</i> intege	ers and $= 0$.		
		Treat (a) and (b) together as a	oatch of 6 marks.		

Question number	Scheme	Marks
11.(a)	$m = \frac{8-2}{11+1} (=\frac{1}{2})$	M1 A1
	$y-2 = \frac{1}{2}(x-1)$ or $y-8 = \frac{1}{2}(x-11)$ o.e.	M1
	$y = \frac{1}{2}x + \frac{5}{2}$ accept exact equivalents e.g. $\frac{6}{12}$	A1c.a.o. (4)
(b)	Gradient of $l_2 = -2$	M1
	Equation of l_2 : $y - 0 = -2(x - 10)$ [$y = -2x + 20$]	M1
	$\frac{1}{2}x + \frac{5}{2} = -2x + 20$	M1
	x = 7 and $y = 6$ depend on all 3 Ms	A1, A1 (5)
(c)	$RS^{2} = (10-7)^{2} + (0-6)^{2} (= 3^{2} + 6^{2})$	M1
	$RS^{2} = (10-7)^{2} + (0-6)^{2} (= 3^{2} + 6^{2})$ $RS = \sqrt{45} = 3\sqrt{5} (*)$	A1c.s.o. (2)
(d)	$PQ = \sqrt{12^2 + 6^2}, = 6\sqrt{5}$ or $\sqrt{180}$ or $PS = 4\sqrt{5}$ and $SQ = 2\sqrt{5}$ Area $= \frac{1}{2}PQ \times RS = \frac{1}{2}6\sqrt{5} \times 3\sqrt{5}$	M1,A1
	Area = $\frac{1}{2}PQ \times RS = \frac{1}{2}6\sqrt{5} \times 3\sqrt{5}$	dM1
	<u>= 45</u>	A1 c.a.o. (4) 15
(a)	1 st M1 for attempting $\frac{y_1 - y_2}{x_1 - x_2}$, must be y over x. No formula condone one	sign slip, but if
	$x_1 - x_2$ formula is quoted then there must be some correct substitution. 1 st A1 for a fully correct expression, needn't be simplified. 2 nd M1 for attempting to find equation of l_1 .	
(b)	1^{st} M1for using the perpendicular gradient rule 2^{nd} M1for attempting to find equation of l_2 . Follow their gradient provide 3^{rd} M1for forming a suitable equation to find S.	d different.
	M1 for expression for RS or RS^2 . Ft their S coordinates	
(c)		c^2 · MO
(d)	1 st M1 for expression for PQ or PQ^2 . $PQ^2 = 12^2 + 6^2$ is M1 but $PQ = 12^2 - Allow$ one numerical slip.	+ 6~ 18 MU
	2 nd dM1 for a full, correct attempt at area of triangle. Dependent on previou	s M1.

GENERAL PRINCIPLES FOR C1 MARKING

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to $x = \dots$

2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm p)^2 \pm q \pm c$, $p \neq 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values. There must be some correct substitution.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first 2 A (or B)</u> marks which <u>would have been lost by</u> <u>following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.