Mark Scheme 4752 June 2006 Section A

000	tion A				
1	1, 3	1,1		2	
2	<i>r</i> = 0.2	3	M1 for $10 = 8/(1 - r)$, then M1 dep't for any correct step	3	
3	1/√15 i.s.w. not +/–	3	M2 for $\sqrt{15}$ seen M1 for rt angled triangle with side 1 and hyp 4, or $\cos^2 \theta = 1 - 1/4^2$.	3	
4	$x^{5}/5 - 3 x^{-1}/-1 + x$	B3	1 each term		
	[value at 2 – value at 1] attempted 5.7 c.a.o.	M1 A1	dep't on B2	5	
5	$[y =] 3x - x^{3}/3 + c$ subst of (6, 1) in their eqn with c $y = 3x - x^{3}/3 + 55$ c.a.o	B1 B1 M1 A1	Dep't on integration attempt Dep't on B0B1 Allow $c = 55$ isw	4	17
6	(i) 3, 8, 13, 18 (ii) use of $n/2[2a + (n - 1)d]$ (S ₁₀₀ =) 25 050 or (S ₅₀ =) 6275 (S ₄₉ =) 6027 or (S ₅₁ =) 6528 their(S ₁₀₀ - S ₅₀) dep't on M1 18 775 cao	B1 M1 A1 M1 A1	Ignore extras Use of $a + (n - 1)d$ $u_{51} = 253$ $u_{100} = 498$ $u_{50} = 248$ $u_{52} = 258$ $50/2$ (their($u_{51} + u_{100}$)) dep't on M1 or $50/2[2 \times \text{their}(u_{51}) + 49 \times 5]$	5	
7	(i) sketch of correct shape correct period and amplitude period halved for $y = \cos 2x$; amplitude unchanged (ii) 30, 150, 210, 330	G1 G1 G1 B2	Not ruled lines need 1 and –1 indicated; nos. on horiz axis not needed if one period shown B1 for 2 of these, ignore extras outside		-
8	$\sqrt{x} = x^{\frac{1}{2}}$ soi 18 x^2 , $\frac{1}{2}x^{-\frac{1}{2}}$	B1 B1B1	range. -1 if $d/dx(3)$ not = 0	5	_
	36x Ax ^{-3/2} (from Bx ^{-1/2})	B1 B1	any A,B	5	
9	$3x \log 5 = \log 100$ $3x = \log 100/\log 5$ x = 0.954	M1 M1 A2	allow any or no base or $3x = \log_5 100$ dep't A1 for other rot versions of 0.9537 SC B2/4 for 0.954 with <u>no</u> log wkg SC B1 r.o.t. 0.9537	4	19

Section B

· · · · ·	Sec	tion B	1			
10	i	$5.2^2 + 6.3^2 - 2 \times 5.2 \times 6.3 \times \cos 57$ "	M2	M1 for recognisable attempt at cos rule.		
	(A)			or greater accuracy		
		ST = 5.6 or 5.57 cao	A1		3	
	I	$\sin T/5.2 = \sin(\text{their 57})/\text{their ST}$	M1	Or sin S/6.3 = \dots or cosine rule		
	(<i>B</i>)	T=51 to 52 or S = 71 to 72	A1	If suitable 0 to 000 second has a diverted		
		bearing 285 + their T	B1	If outside 0 to 360, must be adjusted	2	
		or 408 – their S			3	
	ii	E 2.0 . 24 20/00	B1B1			
		5.2θ , $24 \times 26/60$	B1B1	Lost for all working in degrees		
		$\theta = 1.98$ to 2.02	M1	Implied by 57.3		
		θ = their 2 × 180/ π or 114.6°	A1		5	11
		Bearing = 293 to 294 cao	///		Ŭ	
11	i	$y' = 3x^2 - 6x$	B1	condone one error		
		use of $y'=0$	M1			
		(0, 1) or (2, -3)	A2	A1 for one correct or $x = 0$, 2		
				SC B1 for (0,1) from their y'		
		sign of y'' used to test or y' either	T1	Dep't on M1 or y either side or clear	5	
		side		cubic sketch		
	ii	y'(-1) = 3 + 6 = 9	B1			
		$3x^2 - 6x = 9$	M1	ft for their y'		
		<i>x</i> = 3	A1	implies the M1		
		At P <i>y</i> = 1	B1			
		grad normal = –1/9 cao	B1			
		y - 1 = -1/9 (x - 3)	M1	ft their (3, 1) and their grad, not 9		
		intercepts 12 and 4/3or use of	B1	ft their normal (linear)		
		$\int_{0}^{12} \frac{4}{3} - \frac{1}{9} x dx$ (their normal)				
		••• , •	A1		8	13
		$\frac{1}{2} \times 12 \times 4/3$ cao			0	
12	i	$\log_{10} P = \log_{10} a + \log_{10} 10^{bt}$	B1	condone omission of base		
		$\log_{10} 10^{bt} = bt$	B1			
		intercept indicated as log ₁₀ a	B1		3	
	ii		T1	to 2 of or more: condens and arrar		
	п	3.9(0), 3.94, 4(.00), 4.05, 4.11 plots ft	P1	to 3 sf or more; condone one error 1 mm		
		line of best fit ft	L1	ruled and reasonable	3	
					5	
	iii	(gradient =) 0.04 to 0.06 seen	M1			
	•••	(intercept =) 3.83 to 3.86 seen	M1			
		(a =) 6760 to 7245 seen	A1			
		$P = 7000 \times 10^{0.05t}$ oe	A1	7000×1.12^{t}	4	
				SC P = $10^{0.05t + 3.85}$ left A2		
			1			
	iv	17 000 to 18 500	B2	14 000 to 22 000 B1	2	12
	iv	17 000 to 18 500	B2	14 000 to 22 000 B1	2	12