Mark Scheme 4723 June 2006

			1			
1			ntiate to obtain $k(4x+1)^{-\frac{1}{2}}$	M1		any non-zero constant k
		Obtain $2(4x+1)^{-\frac{1}{2}}$		A1		or equiv, perhaps unsimplified
			$\frac{2}{3}$ for value of first derivative	A1		or unsimplified equiv
		Attempt equation of tangent through (2, 3)		M1		using numerical value of first derivative provided derivative is of form $k'(4x+1)^n$
		Obtain	$y = \frac{2}{3}x + \frac{5}{3}$ or $2x - 3y + 5 = 0$	A1	5	or equiv involving 3 terms
_						
2		<u>Either</u> :	Attempt to square both sides	M1		producing 3 terms on each side
			Obtain $3x^2 - 14x + 8 = 0$	A1		or inequality involving < or >
			Obtain correct values $\frac{2}{3}$ and 4	A 1		
			Attempt valid method for solving inequality	M1		implied by correct answer or
			Obtain $\frac{2}{3} < x < 4$	A 1	5	plausible incorrect answer or correctly expressed equiv;
			3 1 1 1	Λ.	J	allow ≤ signs
						allow = signs
		<u>Or</u> :	Attempt solution of two linear equations or inequalities	M1		one eqn with signs of 2x and x the same, second eqn with signs different
			Obtain value $\frac{2}{3}$	A 1		different
			Obtain value 4	B1		
			Attempt valid method for solving inequality	M1		implied by correct answer or
						plausible incorrect answer
			Obtain $\frac{2}{3} < x < 4$	A1	(5)	or correctly expressed equiv;
						allow ≤ signs
3 (i)		Attempt evaluation of cubic expression at 2 and 3 Obtain -11 and 31 Conclude by noting change of sign		M1 A1 A1	√ 3	or equiv; following any calculated
						values provided negative then positive
(ii)		Obtain correct first iterate		B 1		using x_1 value such that $2 \le x_1 \le 3$
		Attempt correct process to obtain at least 3 iterate		M1	•	using any starting value now

A1 3 answer required to 2 d.p. exactly; 2→2.3811→2.3354→2.3410; 2.5→2.3208→2.3428→2.3401; 3→2.2572→2.3505→2.3392

Obtain 2.34

4 (i) State $\ln y = (x-1)\ln 5$

Obtain $x = 1 + \frac{\ln y}{\ln 5}$

- **B1** whether following $\ln y = \ln 5^{x-1}$ or not; brackets needed
- B1 2 AG; correct working needed;
 missing brackets maybe now implied
- (ii) Differentiate to obtain single term of form $\frac{k}{v}$ M1

Obtain $\frac{1}{y \ln 5}$

A1 2 or equiv involving *y*

any constant k

(iii) Substitute for *y* and attempt reciprocal

M1 or equiv method for finding derivative without using part (ii)

- Obtain 25 ln 5 A1 2 or exact equiv
- 5 (i) State $\sin 2\theta = 2 \sin \theta \cos \theta$

B1 1 or equiv; any letter acceptable here (and in parts (ii) and (iii))

(ii) Attempt to find exact value of $\cos \alpha$

Obtain $\frac{1}{4}\sqrt{15}$ Substitute to confirm $\frac{1}{6}\sqrt{15}$ M1 using identity attempt or rightangled triangle

A1 or exact equiv

A1 3 AG

(iii) State or imply $\sec \beta = \frac{1}{\cos \beta}$

Use identity to produce equation involving $\sin \beta$ Obtain $\sin \beta = 0.3$ and hence 17.5

B1

M1A1 3 and no other values between 0 and 90; allow 17.4 or value rounding to 17.4 or 17.5

6 (i) Either: Obtain f(-3) = -7

Show correct process for compn of functions M1
Obtain -47
A1 3

- B1 maybe implied
- Or: Show correct process for compn of functions**M1**Obtain $2-(2-x^2)^2$ **A1**

using algebraic approach

A1 or equiv

- Obtain -47 A1 (3)
- (ii) Attempt correct process for finding inverse Obtain either one of $x = \pm \sqrt{2-y}$ or both Obtain correct $-\sqrt{2-x}$
- M1 as far as x = ... or equiv A1 or equiv perhaps involving x
- Obtain correct $-\sqrt{2-x}$ A1 3 or equiv; in terms of x now
- (iii) Draw graph showing attempt at reflection in y = xDraw (more or less) correct graph

M1A1 with end-point on *x*-axis and no minimum point in third quadrant

Indicate coordinates 2 and $-\sqrt{2}$

A1 3 accept –1.4 in place of $-\sqrt{2}$

7 (a) Obtain integral of form $k(4x-1)^{-1}$

M1 any non-zero constant k

(b)		Obtain $-\frac{1}{2}(4x-1)^{-1}$ Substitute limits and attempt evaluation Obtain $\frac{2}{21}$			or equiv; allow + c for any expression of form $k'(4x-1)^n$ or exact equiv	
		Integrate to obtain $\ln x$ Substitute limits to obtain $\ln 2a - \ln a$ Subtract integral attempt from attempt at area of appropriate rectangle Obtain $1 - (\ln 2a - \ln a)$ Show at least one relevant logarithm property Obtain $1 - \ln 2$ and hence $\ln(\frac{1}{2}e)$	B1 B1 M1 A1 M1		or equiv or equiv at any stage of solution AG; full detail required	
8	(i)	State $R = 13$ State at least one equation of form $R \cos \alpha = k$, $R \sin \alpha = k'$, $\tan \alpha = k''$	B1 M1		or equiv; allow \sin / \cos muddles; implied by correct α	
		Obtain 67.4	A1	3	allow 67 or greater accuracy	
	(ii)	Refer to translation and stretch	M1		in either order; allow here equiv terms such as 'move', 'shift'; with both transformations involving constants	
		State translation in positive <i>x</i> direction by 67.4	A 11	1	or equiv; following their α ; using correct terminology now	
		State stretch in <i>y</i> direction by factor 13	A 1	/ 3	or equiv; following their <i>R</i> ; using correct terminology now	
	(iii)	Attempt value of $\cos^{-1}(2 \div R)$ Obtain 81.15 Obtain 148.5 as one solution Add their α value to second value	M1 A1 A1	J	following their <i>R</i> ; accept 81 accept 148.5 or 148.6 or value rounding to either of these	
		correctly attempted	М1			
		Obtain 346.2	A 1	5	accept 346.2 or 346.3 or value rounding to either of these; and no other solutions	

9 (i) Attempt to express x in terms of y

Obtain
$$x = e^{\frac{1}{2}y} + 1$$

State or imply volume involves $\int \pi x^2$

Attempt to express x^2 in terms of y

Obtain
$$k \int (e^{y} + 2e^{\frac{1}{2}y} + 1) dy$$

Integrate to obtain $k(e^y + 4e^{\frac{1}{2}y} + y)$ Use limits 0 and p

Obtain $\pi(e^p + 4e^{\frac{1}{2}p} + p - 5)$

(ii) State or imply $\frac{dp}{dt} = 0.2$

Obtain $\pi(e^p + 2e^{\frac{1}{2}p} + 1)$ as derivative of VAttempt multiplication of values or expressions

for $\frac{\mathrm{d}p}{\mathrm{d}t}$ and $\frac{\mathrm{d}V}{\mathrm{d}p}$

Obtain $0.2\pi(e^4 + 2e^2 + 1)$

Obtain 44

- *M1 obtaining two terms
- A1 or equiv

B1

- *M1 dep *M; expanding to produce at least 3 terms
- **A1** any constant *k* including 1; allow if d*y* absent

A1

- M1 dep *M *M; evidence of use of 0 needed
- A1 8 AG; necessary detail required
- **B1** maybe implied by use of 0.2 in product

B1

M1

- **A1** $\sqrt{\frac{dV}{d\rho}}$ expression
- A1 5 or greater accuracy