

GCE

Edexcel GCE

Core Mathematics C4 (6666)

June 2006

advancing learning, changing lives

Mark Scheme (Final)

June 2006 6666 Pure Mathematics C4 Mark Scheme

Question Number	Scheme		Marks
1.	$\left\{\frac{\partial x}{\partial x} \times\right\} 6x - 4y \frac{dy}{dx} + 2 - 3 \frac{dy}{dx} = 0$	Differentiates implicitly to include either $\pm ky\frac{dy}{dx}$ or $\pm 3\frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$.) Correct equation.	M1 A1
	$\left\{ \frac{dy}{dx} = \frac{6x+2}{4y+3} \right\}$	not necessarily required.	
	At (0, 1), $\frac{dy}{dx} = \frac{0+2}{4+3} = \frac{2}{7}$	Substituting x = 0 & y = 1 into an equation involving $\frac{dy}{dx}$; to give $\frac{2}{7}$ or $\frac{-2}{-7}$	dM1; A1 cso
	Hence m(N) = $-\frac{7}{2}$ or $\frac{-1}{\frac{2}{7}}$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	Either N : $y-1 = -\frac{7}{2}(x-0)$ or N : $y = -\frac{7}{2}x + 1$	$y-1=m(x-0) \ \text{with}$ 'their tangent or normal gradient'; or uses $y=mx+1$ with 'their tangent or normal gradient';	M1;
	N : $7x + 2y - 2 = 0$	Correct equation in the form $\ 'ax+by+c=0', \ $ where a, b and c are integers.	A1 oe cso [7]
			7 marks

Beware: $\frac{dy}{dx} = \frac{2}{7}$ does not necessarily imply the award of all the first four marks in this question.

So please ensure that you check candidates' initial differentiation before awarding the first A1 mark.

Beware: The final accuracy mark is for completely correct solutions. If a candidate flukes the final line then they must be awarded A0.

Beware: A candidate finding an m(T) = 0 can obtain A1ft for $m(N) = \infty$, but obtains M0 if they write $y - 1 = \infty(x - 0)$. If they write, however, N: x = 0, then can score M1.

Beware: A candidate finding an $m(T) = \infty$ can obtain A1ft for m(N) = 0, and also obtains M1 if they write y - 1 = 0(x - 0) or y = 1.

Beware: The final **cso** refers to the whole question.

6666/01 Core Maths C4

2

June 2006 Advanced Subsidiary/Advanced Level in GCE Mathematics

Question Number	Scheme		Marks
Aliter 1.	$\left\{ \frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{y}} \times \right\} 6x \frac{dx}{dy} - 4y + 2 \frac{dx}{dy} - 3 = 0$	Differentiates implicitly to include either $\pm kx \frac{dx}{dy}$ or $\pm 2 \frac{dx}{dy}$. (Ignore $\left(\frac{dx}{dy} = \right)$.) Correct equation.	M1 A1
Way 2	$\left\{ \frac{dx}{dy} = \frac{4y+3}{6x+2} \right\}$	not necessarily required.	
	At (0, 1), $\frac{dx}{dy} = \frac{4+3}{0+2} = \frac{7}{2}$	Substituting $x = 0 \& y = 1$ into an equation involving $\frac{dx}{dy}$; to give $\frac{7}{2}$	dM1; A1 cso
	Hence m(N) = $-\frac{7}{2}$ or $\frac{-1}{\frac{2}{7}}$	Uses m(T) or $\frac{dx}{dy}$ to 'correctly' find m(N). Can be ft using "-1. $\frac{dx}{dy}$ ".	A1√ oe.
	Either N : $y-1 = -\frac{7}{2}(x-0)$ or N : $y = -\frac{7}{2}x + 1$	$y-1=m(x-0) \mbox{ with}$ 'their tangent, $\frac{dx}{dy}$ or normal gradient'; or uses $y=mx+1$ with 'their tangent, $\frac{dx}{dy}$ or normal gradient';	M1;
	N : $7x + 2y - 2 = 0$	Correct equation in the form $\label{eq:correct} \begin{tabular}{l} 'ax+by+c=0',\\ where a, b and c are integers. \end{tabular}$	A1 oe cso
			7 marks

Question Number	Scheme		Marks
Aliter 1. Way 3	$2y^{2} + 3y - 3x^{2} - 2x - 5 = 0$ $\left(y + \frac{3}{4}\right)^{2} - \frac{9}{16} = \frac{3x^{2}}{2} + x + \frac{5}{2}$ $y = \sqrt{\left(\frac{3x^{2}}{2} + x + \frac{49}{16}\right)} - \frac{3}{4}$		
	$\frac{dy}{dx} = \frac{1}{2} \left(\frac{3x^2}{2} + x + \frac{49}{16} \right)^{-\frac{1}{2}} (3x+1)$	Differentiates using the chain rule; $ \text{Correct expression for } \frac{dy}{dx} . $	M1; A1 oe
	At (0, 1), $\frac{dy}{dx} = \frac{1}{2} \left(\frac{49}{16}\right)^{-\frac{1}{2}} = \frac{1}{2} \left(\frac{4}{7}\right) = \frac{2}{7}$	Substituting x = 0 into an equation involving $\frac{dy}{dx};$ to give $\frac{2}{7}$ or $\frac{-2}{-7}$	dM1 A1 cso
	Hence $m(\mathbf{N}) = -\frac{7}{2}$	Uses $m(\mathbf{T})$ to 'correctly' find $m(\mathbf{N})$. Can be ft from "their tangent gradient".	A1√
	Either N : $y-1 = -\frac{7}{2}(x-0)$ or N : $y = -\frac{2}{7}x + 1$	$y-1=m(x-0) \ \text{with}$ 'their tangent or normal gradient'; or uses $y=mx+1$ with 'their tangent or normal gradient'	M1
	N : $7x + 2y - 2 = 0$	Correct equation in the form $\ 'ax + by + c = 0'$, where a, b and c are integers.	A1 oe [7]
			7 marks

Question Number	Scheme		Marks
2 . (a)	$3x-1\equiv A(1-2x)+B$	Considers this identity and either substitutes $x = \frac{1}{2}$, equates coefficients or solves simultaneous equations	complete M1
	Let $x = \frac{1}{2}$; $\frac{3}{2} - 1 = B$ \Rightarrow $B = \frac{1}{2}$	equatione	
	Equate x terms; $3 = -2A \implies A = -\frac{3}{2}$	$A = -\frac{3}{2}$; $B = \frac{1}{2}$	A1;A1
	(No working seen, but A and B correctly stated ⇒ award all three marks. If one of A or B correctly stated give two out of the three marks available for this part.)		[3]
(b)	$f(x) = -\frac{3}{2}(1-2x)^{-1} + \frac{1}{2}(1-2x)^{-2}$	Moving powers to top on any one of the two expressions	M1
	$=-\frac{3}{2}\left\{ \frac{1+(-1)(-2x);+\frac{(-1)(-2)}{2!}(-2x)^2+\frac{(-1)(-2)(-3)}{3!}(-2x)^3+\ldots}{3!} \right\}$	Either 1±2x or 1±4x from either first or second expansions respectively	dM1;
	$+\frac{1}{2}\left\{ \frac{1+(-2)(-2x);+\frac{(-2)(-3)}{2!}(-2x)^2+\frac{(-2)(-3)(-4)}{3!}(-2x)^3+\ldots}{3!} \right\}$	Ignoring $-\frac{3}{2}$ and $\frac{1}{2}$, any one correct $\{\underline{\dots}\}$ expansion. Both $\{\underline{\dots}\}$ correct.	A1 A1
	$= -\frac{3}{2} \left\{ 1 + 2x + 4x^2 + 8x^3 + \dots \right\} + \frac{1}{2} \left\{ 1 + 4x + 12x^2 + 32x^3 + \dots \right\}$		
	$= -1 - x ; +0x^2 + 4x^3$	$-1-x$; $(0x^2)+4x^3$	A1; A1 [6]
			9 marks

Beware: In part (a) take care to spot that $A = -\frac{3}{2}$ and $B = \frac{1}{2}$ are the right way around.

Beware: In ePEN, make sure you aware the marks correctly in part (a). The first A1 is for $A = -\frac{3}{2}$ and the second A1 is for $B = \frac{1}{2}$.

Beware: If a candidate uses a method of long division please escalate this to you team leader.

Question Number	Scheme		Marks
Aliter 2. (b) Way 2	$f(x) = (3x-1)(1-2x)^{-2}$	Moving power to top	M1
way 2	$= (3x-1) \times \left(1 + (-2)(-2x); + \frac{(-2)(-3)}{2!}(-2x)^2 + \frac{(-2)(-3)(-4)}{3!}(-2x)^3 + \dots \right)$	$\begin{array}{c} 1\pm 4x\ ;\\ \text{Ignoring (3x-1), correct}\\ \left(\right)\text{ expansion} \end{array}$	dM1; A1
	$= (3x-1)(1+4x+12x^2+32x^3+)$		
	$= 3x + 12x^2 + 36x^3 - 1 - 4x - 12x^2 - 32x^3 + \dots$	Correct expansion	A1
	$=-1-x$; $+0x^2+4x^3$	$-1-x$; $(0x^2)+4x^3$	A1; A1 [6]
Aliter 2. (b) Way 3	Maclaurin expansion		
	$f(x) = -\frac{3}{2}(1-2x)^{-1} + \frac{1}{2}(1-2x)^{-2}$	Bringing both powers to top	M1
	$f'(x) = -3(1-2x)^{-2} + 2(1-2x)^{-3}$	Differentiates to give $a(1-2x)^{-2} \pm b(1-2x)^{-3}$; $-3(1-2x)^{-2} + 2(1-2x)^{-3}$	M1; A1 oe
	$f''(x) = -12(1-2x)^{-3} + 12(1-2x)^{-4}$		
	$f'''(x) = -72(1-2x)^{-4} + 96(1-2x)^{-5}$	Correct f"(x) and f"'(x)	A1
	∴ $f(0) = -1$, $f'(0) = -1$, $f''(0) = 0$ and $f'''(0) = 24$		
	gives $f(x) = -1 - x$; $+ 0x^2 + 4x^3 +$	$-1-x$; $(0x^2)+4x^3$	A1; A1 [6]

Question Number	Scheme		Marks
Aliter 2. (b) Way 4	$f(x) = -3(2-4x)^{-1} + \frac{1}{2}(1-2x)^{-2}$	Moving powers to top on any one of the two expressions	M1
	$=-3\left\{ \begin{aligned} &(2)^{-1}+(-1)(2)^{-2}(-4x);+\frac{(-1)(-2)}{2!}(2)^{-3}(-4x)^2\\ &+\frac{(-1)(-2)(-3)}{3!}(2)^{-4}(-4x)^3+ \end{aligned} \right\}$	Either $\frac{1}{2} \pm x$ or $1 \pm 4x$ from either first or second expansions respectively	dM1;
	$+\frac{1}{2}\left\{ \underbrace{1+(-2)(-2x);+\frac{(-2)(-3)}{2!}(-2x)^2+\frac{(-2)(-3)(-4)}{3!}(-2x)^3+}_{} \right\}$	Ignoring -3 and $\frac{1}{2}$, any one correct $\{\underline{\dots}\}$ expansion. Both $\{\underline{\dots}\}$ correct.	A1 A1
	$= -3\left\{\frac{1}{2} + x + 2x^2 + 4x^3 + \ldots\right\} + \frac{1}{2}\left\{1 + 4x + 12x^2 + 32x^3 + \ldots\right\}$		
	$=-1-x$; $+0x^2+4x^3$	$-1-x$; $(0x^2)+4x^3$	A1; A1 [6]

Question Number	Scheme		Marks
3. (a)	Area Shaded = $\int_{0}^{2\pi} 3\sin(\frac{x}{2}) dx$		
	$= \left[\frac{-3\cos\left(\frac{x}{2}\right)}{\frac{1}{2}}\right]_0^{2\pi}$	Integrating $3\sin(\frac{x}{2})$ to give $k\cos(\frac{x}{2})$ with $k \neq 1$. Ignore limits.	M1
	$= \left[-6\cos\left(\frac{x}{2}\right) \right]_0^{2\pi}$	$-6\cos\left(\frac{x}{2}\right) \text{ or } \frac{-3}{\frac{1}{2}}\cos\left(\frac{x}{2}\right)$	A1 oe.
	= [-6(-1)] - [-6(1)] = 6 + 6 = 12	<u>12</u>	A1 cao
	(Answer of 12 with no working scores M0A0A0.)		[3]
(b)	Volume = $\pi \int_{0}^{2\pi} \left(3\sin\left(\frac{x}{2}\right)\right)^2 dx = 9\pi \int_{0}^{2\pi} \sin^2\left(\frac{x}{2}\right) dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	M1
	$\begin{bmatrix} NB : \underline{\cos 2x = \pm 1 \pm 2 \sin^2 x} & \text{gives } \sin^2 x = \frac{1 - \cos 2x}{2} \end{bmatrix}$ $\begin{bmatrix} NB : \underline{\cos x = \pm 1 \pm 2 \sin^2 \left(\frac{x}{2}\right)} & \text{gives } \sin^2 \left(\frac{x}{2}\right) = \frac{1 - \cos x}{2} \end{bmatrix}$	Consideration of the Half Angle Formula for $\sin^2\left(\frac{x}{2}\right)$ or the Double Angle Formula for $\sin^2 x$	M1 *
	$\therefore \text{Volume} = 9(\pi) \int_{0}^{2\pi} \left(\frac{1 - \cos x}{2} \right) dx$	Correct expression for Volume Ignore limits and π .	A1
	$=\frac{9(\pi)}{2}\int\limits_0^{2\pi}\frac{(1-\cos x)}{dx}dx$		
	$=\frac{9(\pi)}{2}\big[\underline{x-\sin x}\big]_0^{2\pi}$	Integrating to give $\pm ax \pm b \sin x$; Correct integration $k - k \cos x \rightarrow kx - k \sin x$	depM1*;
	$=\frac{9\pi}{2}\big[(2\pi-0)-(0-0)\big]$		
	$=\frac{9\pi}{2}(2\pi)=\frac{9\pi^2}{2}$ or 88.8264	Use of limits to give either 9 π² or awrt 88.8 Solution must be completely correct. No flukes allowed.	A1 cso [6]
			9 marks

Question 3

Note: π is not needed for the middle four marks of question 3(b).

Beware: Owing to the symmetry of the curve between x = 0 and $x = 2\pi$ candidates can find:

• Area =
$$2\int_{0}^{\pi} 3\sin(\frac{x}{2}) dx$$
 in part (a).

• Volume =
$$2\pi \int_{0}^{\pi} (3\sin(\frac{x}{2}))^2 dx$$

Beware: If a candidate gives the correct answer to part (b) with no working please escalate this response up to your team leader.

Question Number	Scheme		Marks
4. (a)	$x = \sin t$, $y = \sin(t + \frac{\pi}{6})$		
	$\frac{dx}{dt} = \cos t$, $\frac{dy}{dt} = \cos\left(t + \frac{\pi}{6}\right)$	Attempt to differentiate both x and y wrt t to give two terms in cos	M1
	dt dt dt	Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	When $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{\cos(\frac{\pi}{6} + \frac{\pi}{6})}{\cos(\frac{\pi}{6})} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Divides in correct way and substitutes for t to give any of the four underlined oe: Ignore the double negative if candidate has differentiated $\sin \rightarrow -\cos$	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T : $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (x - \frac{1}{2})$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses $y = (their gradient)x + "c".$ Correct EXACT equation of tangent oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(\frac{1}{2}\right) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
	or T : $\left[\underline{y = \frac{\sqrt{3}}{3} x + \frac{\sqrt{3}}{3}} \right]$		[6]
(b)	$y = \sin\left(t + \frac{\pi}{6}\right) = \sin t \cos \frac{\pi}{6} + \cos t \sin \frac{\pi}{6}$	Use of compound angle formula for sine.	M1
	Nb: $\sin^2 t + \cos^2 t \equiv 1 \implies \cos^2 t \equiv 1 - \sin^2 t$ $\therefore x = \sin t \text{ gives } \cos t = \sqrt{\left(1 - x^2\right)}$	Use of trig identity to find cost in terms of x or $\cos^2 t$ in terms of x.	M1
	$\therefore y = \frac{\sqrt{3}}{2} \sin t + \frac{1}{2} \cos t$		
	gives $y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}$ AG	Substitutes for sint, $\cos\frac{\pi}{6}$, cost and $\sin\frac{\pi}{6}$ to give y in terms of x.	A1 cso [3]
			9 marks

Question Number	Scheme	Marks
Aliter 4. (a) Way 2	$x=\sin t, \qquad y=\sin \left(t+\tfrac{\pi}{6}\right)=\sin t\cos \tfrac{\pi}{6}+\cos t\sin \tfrac{\pi}{6} \qquad \qquad \text{(Do not give this for part (b))}$ Attempt to differentiate x and y wrt t to give $\tfrac{dx}{dt}$ in terms of cos and $\tfrac{dy}{dt}$ in the form $\pm a\cos t\pmb\sin t$	M1
	$\frac{dx}{dt} = \cos t , \frac{dy}{dt} = \cos t \cos \tfrac{\pi}{6} - \sin t \sin \tfrac{\pi}{6}$ Correct $\tfrac{dx}{dt}$ and $\tfrac{dy}{dt}$	A1
	When $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{\cos\frac{\pi}{6}\cos\frac{\pi}{6} - \sin\frac{\pi}{6}\sin\frac{\pi}{6}}{\cos\left(\frac{\pi}{6}\right)}$ Divides in correct way and substitutes for t to give any of the four underlined oe:	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$ The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T: $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}(x - \frac{1}{2})$ Finding an equation of a tangent with their point and their tangent gradient or finds c and uses $y = (\text{their gradient})x + \text{"c"}$. Correct EXACT equation of tangent oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(\frac{1}{2} \right) + c \implies c = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$	
	or T: $\left[\underline{y = \frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{3}}\right]$	[6]

Question Number	Scheme		Marks
Aliter			
4. (a)	$y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}$		
Way 3	$\frac{dy}{dx} = \frac{\sqrt{3}}{2} + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(1 - x^2\right)^{-\frac{1}{2}} \left(-2x\right)$	Attempt to differentiate two terms using the chain rule for the second term. Correct dy/dx	M1 A1
	$\frac{dy}{dx} = \frac{\sqrt{3}}{2} + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(1 - (0.5)^2\right)^{-\frac{1}{2}} \left(-2(0.5)\right) = \frac{1}{\sqrt{3}}$	Correct substitution of $x = \frac{1}{2}$ into a correct $\frac{dy}{dx}$	A1
	When $t = \frac{\pi}{6}$, $x = \frac{1}{2}$, $y = \frac{\sqrt{3}}{2}$	The point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ or $\left(\frac{1}{2}, \text{ awrt } 0.87\right)$	B1
	T : $y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (x - \frac{1}{2})$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses y = (their gradient)x + "c". Correct EXACT equation of tangent oe.	dM1 <u>A1</u> oe
	or $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} (\frac{1}{2}) + C \implies C = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{6} = \frac{\sqrt{3}}{3}$		
Aliter	or T : $\left[\underline{y = \frac{\sqrt{3}}{3} x + \frac{\sqrt{3}}{3}} \right]$		[6]
4. (b) Way 2	$x = \sin t$ gives $y = \frac{\sqrt{3}}{2} \sin t + \frac{1}{2} \sqrt{\left(1 - \sin^2 t\right)}$	Substitutes $x = \sin t$ into the equation give in y.	M1
liuy 2	Nb: $\sin^2 t + \cos^2 t \equiv 1 \implies \cos^2 t \equiv 1 - \sin^2 t$		
	$\cos t = \sqrt{\left(1 - \sin^2 t\right)}$	Use of trig identity to deduce that $cost = \sqrt{\left(1-sin^2t\right)} .$	M1
	gives $y = \frac{\sqrt{3}}{2} \sin t + \frac{1}{2} \cos t$		
	Hence $y = \sin t \cos \frac{\pi}{6} + \cos t \sin \frac{\pi}{6} = \sin(t + \frac{\pi}{6})$	Using the compound angle formula to prove $y = \sin(t + \frac{\pi}{6})$	A1 cso [3]
			9 marks

Question Number	Scheme		Marks
5. (a)	Equating i; $0 = 6 + \lambda \implies \lambda = -6$	$\frac{\lambda = -6}{\text{Can be implied}}$	$B1 \Rightarrow d$
	Using $\lambda = -6$ and	Oan be implied	
	equating j ; $a = 19 + 4(-6) = -5$	For inserting their stated λ into either a correct ${\bf j}$ or ${\bf k}$ component Can be implied.	$M1 \Rightarrow d$
	equating k ; $b = -1 - 2(-6) = 11$	a = -5 and $b = 11$	A1 [3]
	With no working only one of a or b stated correctly gains the first 2 marks both a and b stated correctly gains 3 marks.		[3]
(b)	$\overrightarrow{OP} = (6 + \lambda)\mathbf{i} + (19 + 4\lambda)\mathbf{j} + (-1 - 2\lambda)\mathbf{k}$		
	direction vector or $I_1 = \mathbf{d} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$		
	$\overrightarrow{OP} \perp I_1 \ \Rightarrow \overrightarrow{OP} \bullet d = 0$	Allow this statement for M1 if \overrightarrow{OP} and \mathbf{d} are defined as above.	
	ie. $ \begin{pmatrix} 6+\lambda \\ 19+4\lambda \\ -1-2\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = 0 \left(\text{or } \underline{x+4y-2z=0} \right) $	Allow either of these two underlined statements	M1
	$\therefore 6 + \lambda + 4(19 + 4\lambda) - 2(-1 - 2\lambda) = 0$	Correct equation	A1 oe
	$6+\lambda+76+16\lambda+2+4\lambda=0$	Attempt to solve the equation in λ	dM1
	$21\lambda + 84 = 0 \Rightarrow \lambda = -4$	$\lambda = -4$	A1
	$\overrightarrow{OP} = (6-4)\mathbf{i} + (19+4(-4))\mathbf{j} + (-1-2(-4))\mathbf{k}$	Substitutes their λ into an expression for \overrightarrow{OP}	M1
	$\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$	2i + 3j + 7k or P(2, 3, 7)	A1
			[6]

Note: A similar method may be used by using $\overrightarrow{OP} = (0+\lambda)\mathbf{i} + (-5+4\lambda)\mathbf{j} + (11-2\lambda)\mathbf{k}$ and $\mathbf{d} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ $\overrightarrow{OP} \bullet \mathbf{d} = 0$ yields $6 + \lambda + 4(-5 + 4\lambda) - 2(11 - 2\lambda) = 0$ This simplifies to $21\lambda - 42 = 0 \implies \lambda = 2$. $\overrightarrow{OP} = (0+2)\mathbf{i} + (-5+4(2))\mathbf{j} + (11-2(2))\mathbf{k}$ $\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$

Question Number	Scheme		Marks
Aliter (b) Way 2	$\overrightarrow{OP} = (6 + \lambda)\mathbf{i} + (19 + 4\lambda)\mathbf{j} + (-1 - 2\lambda)\mathbf{k}$		
vvay 2	$\overrightarrow{AP} = (6 + \lambda - 0)\mathbf{i} + (19 + 4\lambda + 5)\mathbf{j} + (-1 - 2\lambda - 11)\mathbf{k}$		
	direction vector or $I_1 = \mathbf{d} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$		
	$\overrightarrow{AP} \perp \overrightarrow{OP} \Rightarrow \overline{\overrightarrow{AP} \bullet \overrightarrow{OP} = 0}$	Allow this statement for M1 if \overrightarrow{AP} and \overrightarrow{OP} are defined as above.	
	ie. $ \frac{\begin{pmatrix} 6+\lambda \\ 24+4\lambda \\ -12-2\lambda \end{pmatrix}}{\begin{pmatrix} -12-2\lambda \end{pmatrix}} $	underlined statement	M1
	$\therefore (6+\lambda)(6+\lambda) + (24+4\lambda)(19+4\lambda) + (-12-2\lambda)(-1-2\lambda) = 0$	Correct equation	A1 oe
	$36 + 12\lambda + \lambda^2 + 456 + 96\lambda + 76\lambda + 16\lambda^2 + 12 + 24\lambda + 2\lambda + 4\lambda^2 = 0$	Attempt to solve the equation in λ	dM1
	$21\lambda^2 + 210\lambda + 504 = 0$		
	$\lambda^2 + 10\lambda + 24 = 0 \implies (\lambda = -6) \underline{\lambda = -4}$	$\lambda = -4$	A1
	$\overrightarrow{OP} = (6-4)\mathbf{i} + (19+4(-4))\mathbf{j} + (-1-2(-4))\mathbf{k}$	Substitutes their λ into an expression for $\overline{\text{OP}}$	M1
	$\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$	$2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$ or $P(2, 3, 7)$	A1
		() -	[6]

Note: A similar method to way 2 may be used by using $\overrightarrow{OP} = (5+\lambda)\mathbf{i} + (15+4\lambda)\mathbf{j} + (1-2\lambda)\mathbf{k}$ and $\overrightarrow{AP} = (5+\lambda-0)\mathbf{i} + (15+4\lambda+5)\mathbf{j} + (1-2\lambda-11)\mathbf{k}$ $\overrightarrow{AP} \bullet \overrightarrow{OP} = 0$ yields $(5+\lambda)(5+\lambda) + (20+4\lambda)(15+4\lambda) + (-10-2\lambda)(1-2\lambda) = 0$ This simplifies to $21\lambda^2 + 168\lambda + 315 = 0$. $\lambda^2 + 8\lambda + 15 = 0 \Rightarrow (\lambda = -5)$ $\lambda = -3$ $\overrightarrow{OP} = (5-3)\mathbf{i} + (15+4(-3))\mathbf{j} + (1-2(-3))\mathbf{k}$ $\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$

Question Number	Scheme		Marks
5. (c)	$OP = 2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$		
	$\overrightarrow{OA} = 0i - 5j + 11k$ and $\overrightarrow{OB} = 5i + 15j + k$		
	$\overrightarrow{AP} = \pm (2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}), \overrightarrow{PB} = \pm (3\mathbf{i} + 12\mathbf{j} - 6\mathbf{k})$ $\overrightarrow{AB} = \pm (5\mathbf{i} + 20\mathbf{j} - 10\mathbf{k})$	Subtracting vectors to find any two of \overrightarrow{AP} , \overrightarrow{PB} or \overrightarrow{AB} ; and both are correctly ft using candidate's \overrightarrow{OA} and \overrightarrow{OP} found in parts (a) and (b) respectively.	M1; A1ñ
	As $\overrightarrow{AP} = \frac{2}{3} (3\mathbf{i} + 12\mathbf{j} - 6\mathbf{k}) = \frac{2}{3} \overrightarrow{PB}$	$\overrightarrow{AP} = \frac{2}{3} \overrightarrow{PB}$	
	or $\overrightarrow{AB} = \frac{5}{2} (2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}) = \frac{5}{2} \overrightarrow{AP}$	or $\overrightarrow{AB} = \frac{5}{2} \overrightarrow{AP}$	
	or $\overrightarrow{AB} = \frac{5}{3}(3\mathbf{i} + 12\mathbf{j} - 6\mathbf{k}) = \frac{5}{3}\overrightarrow{PB}$	or $\overrightarrow{AB} = \frac{5}{3} \overrightarrow{PB}$	
	or $\overrightarrow{PB} = \frac{3}{2}(2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}) = \frac{3}{2}\overrightarrow{AP}$	or $\overrightarrow{PB} = \frac{3}{2} \overrightarrow{AP}$	
	or $\overrightarrow{AP} = \frac{2}{5} (5\mathbf{i} + 20\mathbf{j} - 10\mathbf{k}) = \frac{2}{5} \overrightarrow{AB}$	or $\overrightarrow{AP} = \frac{2}{5} \overrightarrow{AB}$	
	or $\overline{PB} = \frac{3}{5} (5i + 20 j - 10 k) = \frac{3}{5} \overline{AB}$ etc	or $\overrightarrow{PB} = \frac{3}{5} \overrightarrow{AB}$	
	alternatively candidates could say for example that		
	$\overrightarrow{AP} = 2(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$ $\overrightarrow{PB} = 3(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$		
	then the points A, P and B are collinear.	A, P and B are collinear Completely correct proof.	A1
	$\therefore \overrightarrow{AP} : \overrightarrow{PB} = 2:3$	2:3 or $1:\frac{3}{2}$ or $\sqrt{84}:\sqrt{189}$ aef	B1 oe
		allow SC $\frac{2}{3}$	[4]
Aliter			
5. (c)	At B; $\underline{5=6+\lambda}$, $\underline{15=19+4\lambda}$ or $\underline{1=-1-2\lambda}$ or at B; $\lambda=-1$	Writing down any of the three underlined equations.	M1
Way 2	gives $\lambda = -1$ for all three equations. or when $\lambda = -1$, this gives $\mathbf{r} = 5\mathbf{i} + 15\mathbf{j} + \mathbf{k}$	$\lambda = -1 \text{for all three equations}$ or $\lambda = -1 \text{ gives } \boldsymbol{r} = 5\boldsymbol{i} + 15\boldsymbol{j} + \boldsymbol{k}$	A1
	Hence B lies on I_1 . As stated in the question both A and P lie on I_1 . \therefore A, P and B are collinear.	Must state B lies on $I_1 \Rightarrow$ A, P and B are collinear	A1
	$\therefore \overrightarrow{AP} : \overrightarrow{PB} = 2:3$	2:3 or aef	B1 oe
			[4]
			13 marks

Beware of candidates who will try to fudge that one vector is multiple of another for the final A mark in part (c).

Question Number			Scheme				Mar	íks
6. (a)								
	X	1	1.5	2	2.5	3		
	у	0	0.5 ln 1.5	ln 2	1.5 ln 2.5	2 ln 3		
	or y	0	0.2027325541	ln2	1.374436098	2 ln 3		
						ner 0.5 ln 1.5 and 1.5 ln 2.9 or awrt 0.20 and 1.3 mixture of decimals and ln's	₇ B1	[1]
(b)(i)	$I_1 \approx \frac{1}{2} \times 1 \times$	$\left\{0+2\left(\ln 2\right)\right\}$	$2) + 2 \ln 3$			For structure of trapezium $\frac{\text{rule}}{\{\dots,\dots\}}$	N 44 .	
	$=\frac{1}{2}\times 3$.5835189	38 = 1.791759	9 = 1.79	2 (4sf)	1.792	A1 cao	
(ii)	$I_2 \approx \frac{1}{2} \times 0.$	$.5 ; \times \{0+2\}$	(0.5 ln1.5 + ln2 + 1	.5ln2.5) +	- 2ln3}	Outside brackets $\frac{1}{2} \times 0.5$ For structure of trapezium rule $\{\dots \}$		$\sqrt{}$
	$=\frac{1}{4}\times 6$	6.7378562	242 = 1.68446	4		awrt 1.684		[5]
(c)			linates, <u>the line se</u> are closer to the c			on or an appropriate diagran aborating the correct reason	B1	[1]

Beware: In part (b) candidate can add up the individual trapezia:

(b)(i)
$$I_1 \approx \frac{1}{2} \left(\underline{0 + \ln 2} \right) + \frac{1}{2} \left(\underline{\ln 2 + \ln 3} \right)$$

$$\text{(ii)} \hspace{0.5cm} I_2 \approx \tfrac{1}{2}.\tfrac{1}{2}\big(\underline{0} + 0.5 \, \underline{\ln} 1.5\big) + \tfrac{1}{2}.\tfrac{1}{2}\big(\underline{0.5} \, \underline{\ln} 1.5 + \underline{\ln} 2\big) + \tfrac{1}{2}.\tfrac{1}{2}\big(\underline{\ln} 2 + 1.5 \, \underline{\ln} 2.5\big) + \tfrac{1}{2}.\tfrac{1}{2}\big(\underline{1.5} \, \underline{\ln} 2.5 + 2 \, \underline{\ln} 3\big)$$

Question Number	Scheme		Marks
6. (d)	$\begin{cases} u = \ln x & \Rightarrow & \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x - 1 & \Rightarrow & v = \frac{x^2}{2} - x \end{cases}$	Use of 'integration by parts' formula in the correct direction	M1
	$I = \left(\frac{x^2}{2} - x\right) \ln x - \int \frac{1}{x} \left(\frac{x^2}{2} - x\right) dx$	Correct expression	A1
	$= \left(\frac{x^2}{2} - x\right) \ln x - \underline{\int \left(\frac{x}{2} - 1\right) dx}$	An attempt to multiply at least one term through by $\frac{1}{x}$ and an attempt to	
	$= \left(\frac{x^2}{2} - x\right) \ln x - \left(\frac{x^2}{4} - x\right) (+c)$	integrate;	M1;
	(2) (4)	correct integration	A1
	$\therefore I = \left[\left(\frac{x^2}{2} - x \right) \ln x - \frac{x^2}{4} + x \right]_1^3$		
	$= \left(\frac{3}{2} \ln 3 - \frac{9}{4} + 3\right) - \left(-\frac{1}{2} \ln 1 - \frac{1}{4} + 1\right)$	Substitutes limits of 3 and 1 and subtracts.	ddM1
	$= \frac{3}{2} \ln 3 + \frac{3}{4} + 0 - \frac{3}{4} = \frac{3}{2} \ln 3 \mathbf{AG}$	3/2 ln 3	A1 cso
			[6]
Aliter 6. (d) Way 2	$\int (x-1) \ln x dx = \int x \ln x dx - \int \ln x dx$		
Way 2	$\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \left(\frac{1}{x}\right) dx$	Correct application of 'by parts'	M1
	$=\frac{x^2}{2}\ln x - \frac{x^2}{4}$ (+ c)	Correct integration	A1
	$\int \ln x dx = x \ln x - \int x \cdot \left(\frac{1}{x}\right) dx$	Correct application of 'by parts'	M1
	$=x\ln x-x (+c)$	Correct integration	A1
	$\therefore \int_{1}^{3} (x-1) \ln x dx = \left(\frac{9}{2} \ln 3 - 2\right) - \left(3 \ln 3 - 2\right) = \frac{3}{2} \ln 3 \text{ AG}$	Substitutes limits of 3 and 1 into both integrands and subtracts.	ddM1
		3/2 ln 3	A1 cso [6]

Question Number	Scheme		Marks
6. (d) Way 3	$\begin{cases} u = \ln x & \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = (x - 1) & \Rightarrow v = \frac{(x - 1)^2}{2} \end{cases}$	Use of 'integration by parts' formula in the correct direction	M1
	$I = \frac{(x-1)^2}{2} \ln x - \int \frac{(x-1)^2}{2x} dx$ $= \frac{(x-1)^2}{2} \ln x - \int \frac{x^2 - 2x + 1}{2x} dx$ $= \frac{(x-1)^2}{2} \ln x - \int \frac{1}{2} (x-1) + \frac{1}{2x} dx$	Candidate multiplies out numerator to obtain three terms multiplies at least one term through by $\frac{1}{x}$ and then attempts to	A1
	$= \frac{(x-1)^2}{2} \ln x - \underbrace{\left(\frac{x^2}{4} - x + \frac{1}{2} \ln x\right)}_{\text{(+c)}}$	integrate the result; correct integration	M1; A1
	$\therefore I = \left[\frac{(x-1)^2}{2} \ln x - \frac{x^2}{4} + x - \frac{1}{2} \ln x \right]_1^3$		
	$= \left(2\ln 3 - \frac{9}{4} + 3 - \frac{1}{2}\ln 3\right) - \left(0 - \frac{1}{4} + 1 - 0\right)$	Substitutes limits of 3 and 1 and subtracts.	ddM1
	$=2\ln 3 - \frac{1}{2}\ln 3 + \frac{3}{4} + \frac{1}{4} - 1 = \frac{3}{2}\ln 3 \mathbf{AG}$	$\frac{3}{2}$ ln3	A1 cso
			[6]

Beware: $\int \frac{1}{2x} dx$ can also integrate to $\frac{1}{2} \ln 2x$

Beware: If you are marking using WAY 2 please make sure that you allocate the marks in the order they appear on the mark scheme. For example if a candidate only integrated lnx correctly then they would be awarded M0A0M1A1M0A0 on ePEN.

Question Number	Scheme	Marks
Aliter	By substitution	
6. (d)	$u = \ln x \implies \frac{du}{dx} = \frac{1}{x}$	
Way 4	Q A	
	$I = \int (e^u - 1).ue^u du$ Correct expression	
	$= \int u \Big(e^{2u} - e^u \Big) du$ Use of 'integration by parts' formula in the correct direction	M1
	$= u \left(\frac{1}{2}e^{2u} - e^{u}\right) - \int \underbrace{\left(\frac{1}{2}e^{2u} - e^{u}\right)}_{} dx$ Correct expression	A1
	$= u \left(\frac{1}{2}e^{2u} - e^{u}\right) - \left(\frac{1}{4}e^{2u} - e^{u}\right) \text{ (+c)}$ Attempt to integrate;	M1;
	correct integration	A1
	$\therefore I = \left[\frac{1}{2} u e^{2u} - u e^{u} - \frac{1}{4} e^{2u} + e^{u} \right]_{ln1}^{ln3}$	
	$= \left(\frac{9}{2}\ln 3 - 3\ln 3 - \frac{9}{4} + 3\right) - \left(0 - 0 - \frac{1}{4} + 1\right)$ Substitutes limits of ln3 and ln1 and subtracts.	ddM1
	$= \frac{3}{2}\ln 3 + \frac{3}{4} + \frac{1}{4} - 1 = \frac{3}{2}\ln 3 \qquad \textbf{AG}$	A1 cso
		[6]
		13 marks

Question Number	Scheme		Marks
7. (a)	From question, $\frac{dS}{dt} = 8$	$\frac{dS}{dt} = 8$	B1
	$S = 6x^2 \implies \frac{dS}{dx} = 12x$	$\frac{dS}{dx} = 12x$	B1
	$\frac{dx}{dt} = \frac{dS}{dt} \div \frac{dS}{dx} = \frac{8}{\underline{12x}}; = \frac{\frac{2}{3}}{x} \implies \left(k = \frac{2}{3}\right)$ Candida	te's $\frac{dS}{dt} \div \frac{dS}{dx}$; $\frac{8}{12x}$	M1; <u>A1</u> oe
			[4]
(b)	$V = x^3 \implies \frac{dV}{dx} = 3x^2$	$\frac{dV}{dx} = 3x^2$	B1
	$\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt} = 3x^2 \cdot \left(\frac{2}{3x}\right); = 2x$ Candidate	ate's $\frac{dV}{dx} \times \frac{dx}{dt}$; λx	M1; A1√
	As $x = V^{\frac{1}{3}}$, then $\frac{dV}{dt} = 2V^{\frac{1}{3}}$ AG Use of $x = V$	$\frac{1}{3}$, to give $\frac{dV}{dt} = 2V^{\frac{1}{3}}$	A1 [4]
	Separat	es the variables with	[-1
(a)	rdV r	$\frac{1}{3}$ dV on one side and	B1
(6)	J J V ³	dt on the other side.	ы
	integral s	signs not necessary.	
	$\int V^{-\frac{1}{3}} dV = \int 2 dt$		
		s to integrate and	M1;
		must see $V^{\frac{2}{3}}$ and 2t; tion with/without + c.	A1
	<u> </u>	f V = 8 and t = 0 in a puation containing c; c = 6	M1*; A1
	Hence: $\frac{3}{2}V^{\frac{2}{3}} = 2t + 6$		
	$\left \frac{3}{3}(16\sqrt{2})^{\frac{2}{3}}\right = 2t + 6 \implies 12 = 2t + 6 \dots$ substitute	heir "c" candidate es $V = 16\sqrt{2}$ into an envolving V, t and "c".	depM1*
	giving $t = 3$.	t = 3	A1 cao
			[7]
			15 marks

Question	Scheme		Marks
Number			
Aliter 7. (b)	$x = V^{\frac{1}{3}} \& S = 6x^2 \implies S = 6V^{\frac{2}{3}}$	$S=6V^{\frac{2}{3}}$	B1 √
Way 2	$\frac{dS}{dV} = 4V^{-\frac{1}{3}} \text{ or } \frac{dV}{dS} = \frac{1}{4}V^{\frac{1}{3}}$	$\frac{dS}{dV} = 4V^{-\frac{1}{3}} \text{ or } \frac{dV}{dS} = \frac{1}{4}V^{\frac{1}{3}}$	B1
	$\frac{dV}{dt} = \frac{dS}{dt} \times \frac{dV}{dS} = 8. \left(\frac{1}{4V^{-\frac{1}{3}}}\right); = \frac{2}{V^{-\frac{1}{3}}} = 2V^{\frac{1}{3}} \text{ AG}$	Candidate's $\frac{dS}{dt} \times \frac{dV}{dS}$; $2V^{\frac{1}{3}}$	M1; A1
		In ePEN, award Marks for Way 2 in the order they appear on this mark scheme.	
			[4]
Aliter		0 () () () ()	
		Separates the variables with	
7. (c)	$\int \frac{dV}{2V^{\frac{1}{3}}} = \int 1 dt$	$\int \frac{dV}{2V^{\frac{1}{3}}} \text{or } \int \frac{1}{2} V^{-\frac{1}{3}} dV \text{ oe on one}$	B1
	• 2 V	side and $\int 1$ dt on the other side.	
Way 2		integral signs not necessary.	
	$\frac{1}{2}\int V^{-\frac{1}{3}} dV = \int 1 dt$		
	2J J		
		Attempts to integrate and	
	$(\frac{1}{2})(\frac{3}{2})V^{\frac{2}{3}} = t$ (+c)	must see $V^{\frac{2}{3}}$ and t;	M1; A1
		Correct equation with/without + c.	A1
	$\frac{3}{4}(8)^{\frac{2}{3}} = (0) + c \implies c = 3$	Use of V = 8 and t = 0 in a changed equation containing c ; $c=3$	M1*; A1
	Hence: $\frac{3}{4}V^{\frac{2}{3}} = t + 3$		
	FIGURE: $\frac{1}{4}$ $\mathbf{v}^{\perp} = \mathbf{t} + \mathbf{S}$	Lloying formed their "-"	
		Having found their "c" candidate	
	$\frac{3}{4}\left(16\sqrt{2}\right)^{\frac{2}{3}}=t+3\qquad \Rightarrow 6=t+3$	substitutes $V = 16\sqrt{2}$ into an equation involving V, t and "c".	depM1*
	giving $t = 3$.	t = 3	A1 cao [7]

Beware: On ePEN award the marks in part (c) in the order they appear on the mark scheme.

Question Number	Scheme	Marks
Aliter	similar to way 1.	
(b)	$V = x^3 \implies \frac{dV}{dx} = 3x^2 \qquad \qquad \frac{dV}{dx} = 3x^2$	B1
Way 3		
	$\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dS}{dt} \times \frac{dx}{dS} = 3x^2.8. \left(\frac{1}{12x}\right); = 2x$ Candidate's $\frac{dV}{dx} \times \frac{dS}{dt} \times \frac{dS}{dt} \times \frac{dx}{dS}; \lambda x$	M1; A1√
	As $x = V^{\frac{1}{3}}$, then $\frac{dV}{dt} = 2V^{\frac{1}{3}}$ AG Use of $x = V^{\frac{1}{3}}$, to give $\frac{dV}{dt} = 2V^{\frac{1}{3}}$	A1 [4]
Aliter		ניין
	Separates the variables with	
(c)	$\int \frac{dV}{V^{\frac{1}{3}}} = \int 2 dt$ $\int \frac{dV}{V^{\frac{1}{3}}} \text{ or } \int V^{-\frac{1}{3}} dV \text{ on one side and}$	B1
	$\int 2 dt$ on the other side.	
Way 2	integral signs not possessory	
Way 3	integral signs not necessary.	
	$\int V^3 dV = \int 2 dt$	
	integral signs not necessary. $\int V^{-\frac{1}{3}} \ dV = \int 2 \ dt$ Attempts to integrate and $V^{\frac{2}{3}} = \frac{4}{3}t \ \ (+c)$ must see $V^{\frac{2}{3}}$ and $\frac{4}{3}t$; Correct equation with/without $+c$	
	$V_{3}^{\frac{2}{3}} = \frac{4}{3} + \frac{1}{12}$ must see $V^{\frac{2}{3}}$ and $\frac{4}{3}$ t;	M1;
	Correct equation with/without + c.	A1
	Use of V = 8 and t = 0 in a	N44 A4
	$(8)^{\frac{2}{3}} = \frac{4}{3}(0) + c \implies c = 4$ changed equation containing c; $c = 4$	M1 * ; A1
	Hence: $V^{\frac{2}{3}} = \frac{4}{3}t + 4$	
	Having found their "c" candidate	
	$ (16\sqrt{2})^{\frac{2}{3}} = \frac{4}{3}t + 6 $	dopM4 v
	$(10\sqrt{2})^{\frac{1}{3}} = \frac{1}{3} + 0$ \Rightarrow $0 = \frac{1}{3} + 4$ equation involving V, t and "c".	depM1*
		A4
	giving $t = 3$. $t = 3$	A1 cao [7]
		[,]

- **Beware** when marking question 7(c). There are a variety of valid ways that a candidate can use to find the constant "c".
- In questions 7(b) and 7(c) there may be "Ways" that I have not listed. Please use the mark scheme as a guide of how the mark the students' responses.
- In 7(c), if a candidate instead tries to solve the differential equation in part (a) escalate the response to your team leader.
- IF YOU ARE UNSURE ON HOW TO APPLY THE MARK SCHEME PLEASE ESCALATE THE RESPONSE UP TO YOUR TEAM LEADER VIA THE REVIEW SYSTEM.
- Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark.
 ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.
 depM1* denotes a method mark which is dependent upon the award of M1*.