Mark Scheme 4736 June 2006

1	(i)	2 4 3 3 2 5 4		
		Box 1 2 4 2 Box 2 3 3 Box 3 5 Dox 4 4	M1	For packing these seven weights into boxes with no more than 8 kg total in each box
	(ii)	5 4 4 3 3 2 2	B1	For putting the weights into decreasing order
		Box 1 5 3 Box 2 4 4	M1	(may be implied from packing) For packing the seven weights into three boxes with no more than 8 kg total in each
		Box 3 3 2 2	A1 [3]	box For this packing
	(iii)	15×2^2	M1	For a correct calculation
		= 60 seconds	A1 [2]	For 60 or 60 seconds or 1 minute
				7
2	(i)	\frown \frown \bullet		Graphs may be in any order
			M1 A1 [2]	For a reasonable attempt For a graph that is topologically equivalent to one of these graphs
		graph <i>A</i> graph <i>B</i> graph <i>C</i> other solutions:	M1 A1 [2]	For a different reasonable attempt For a graph that is topologically equivalent to one of these graphs
		or t	M1 A1 [2]	For another different reasonable attempt For a graph that is topologically equivalent to one of these graphs
	(ii)	The graphs each have four odd nodes, but Eulerian graphs have no odd nodes.	B1 [1]	For any recognition that the nodes are not all even
				7

Mark Scheme

3	(i)	Travelling salesperson	B1	[1]	Identifying TSP by name
	(ii)	A-B-E-G-F-D-C-A	M1 A1		For starting with $A - B - E - G$ For this closed tour
		130 (minutes)	B1		For 130
		Shortest possible time < 130 minutes	B1	[4]	For less than or equal to their time, with units
	(iii)	Order of connecting: B , E , G , F , D , C	B1		For a valid vertex order (or arc order) for their starting point
		B 20 E or B 20 E 10 D G D D	M1 A1		For a diagram or listing showing a tree connecting the vertices <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> and <i>G</i> but not <i>A</i>
		G 20 20 20 20 20 20 20 20 20 20	M1 M1		For a diagram showing one of these trees (vertices must be labelled but arc weights are not needed)
		C F C F Lower bound = 10 + 15 + 95 = 120 minutes	A1	[6]	For stating or using the total weight of their tree For stating or using AB and AD or $10 + 15$ For 120 or calculating 25 + their 95, with
					units
	(iv)	A - B - E - G - F - C - D - A or this in reverse	M1 A1	[2]	For a reasonable attempt For a valid tour of weight 125
					13

4	(i)	x <u><</u> 2	B1		Strict inequalities used, penalise first time
		y <u>></u> 1	B1		only
		y <u><</u> 2x	B1		All inequalities reversed, penalise first time
		<i>x</i> + <i>y</i> ≤ 4	B1	[4]	only
	(ii)	(2, 1), (2, 2)	B1		Both of these
	. ,	(¹ / ₂ , 1)	B1		This vertex in any exact form
		$(1\frac{1}{3}, 2\frac{2}{3})$	B1	[3]	This vertex in any exact form or correct to 3
					sf
	(iii)	$x \qquad y P = x + 2y$			
		2 1 4			
		2 2 6	M1		Evidence of checking value at any vertex or
		1/2 1 21/2			using a sliding profit line
		$1\frac{1}{3}$ $2\frac{2}{3}$ $6\frac{2}{3}$			
					-
		$x = 1\frac{1}{3}, y = 2\frac{2}{3}$	A1		I heir x and y values at maximum in any
		(may be given in coordinate form)		[0]	exact form or correct to 3 sf
		$P = 6\frac{2}{3}$	A1	[3]	I heir maximum P value in any exact form or
	()		+		
	(1V)	$\begin{array}{cccc} x & y & Q = 2 x - y \\ 2 & 1 & 2 \end{array}$			
			N/1		Evidence of checking value at any vortex or
					using a sliding profit line
		$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$			using a similar profit line
		O = 0			
			A1		0 (cao)
		(x, y) can be any point on the line segment			
		ioining $(\frac{1}{2}, \frac{1}{2})$ and $(\frac{1}{2}, \frac{2}{2})$	A1	[3]	The edge of the feasible region where $y = 2x$
		Jenning (, 2, 1) and (1/3, 2/3)			No follow through
	(v)	$P = Q \Longrightarrow 2x - y = x + 2y$	M1		For considering $P = Q$, or equivalent
		$\Rightarrow x = 3y$	A1		For this line, or any equivalent reasoning
		$y = \frac{1}{3}x$ lies entirely in the shaded region	A1	[3]	For explanation of why there are no solutions
		, ,, , , , , , , , , , , , , , , , , , ,			
					16

5	(i)	2x - 5y + 2z + s = 10 2x + 3z + t = 30								B1	[1]	Slack variables used correctly
	(ii)	Р	x	y	Z	s	t			M1 A1		For overall structure correct, including two
		1	-1	2	3	0	0	0				slack variable columns and column for RHS (condone omission of <i>R</i> column or labels)
		0	2	-5	2	1	0	10			[2]	For a completely correct initial tableau, with no extra constraints added (condone
		0	2	0	3	0	1	30			[-]	
												variations in order of rows or columns)
	(iii)	Pivot on <i>x</i> column since it is the only column							olumn			
		with a negative value in the objective row								B1		For negative in objective row, top row, pay-
		$10 \div 2$ $30 \div 2$	2 = 5 2 = 15		0 < 1	5 50	ρινοι	on th	STOW	B1	[2]	For these two divisions shown
	(iv)	New row $2 = row 2 \div 2$								B1		For dealing with the pivot row correctly
		New row $1 = row 1 + new row 2$								B1	[2]	For dealing with the other rows correctly
		New row 3 = row 3 – 2 × new row 2										May be coded by rows of table
		1 0 -0.5 4 0.5 0 5								M1		For updating their pivot row correctly
		0	1 -:	2.5	1	0.5	; O	5		M1	[0]	For a reasonable attempt at updating other
		0	0	5	1	-1	1	20		AT	ျပ	For correct values in tableau (condone
												consistent order of rows or columns). Do not
												follow through errors in initial tableau or pivot
												choice.
		x = 5, y = 0, z = 0								В1 Б1		For reading off x, y and z from their tableau
		<i>P</i> = 5 Not the maximum feasible value of <i>P</i> since there is still a negative value in the							000	DI R1	[3]	'No' seen or implied and a correct reason
										5,	[0]	
		objec	tive ro	w				-				13

6 (a)	1 0 3 24 7 45 A B C	ANSWERED ON INSERT M1 Values correct at <i>B</i> , <i>D</i> and <i>E</i> (condone temporary labels implied from permanent labels) M1 Both 54 and 37 seen at <i>H</i> and both 51 and
	2 18 4 25 6 42 8 47 18 25 42 51 47	 All temporary labels correct and no extras
	D E F G 5 37 9 48 54 37 48	B1 Order of labelling correct (condone boxes consistently swapped over)
	$H \qquad J$ $A - E - H - J$ 48 metres	B1 For this route, including end vertices (cao) B1 [7] For 48 (cao)
(b) (i)	A and J are the only odd nodes 48 + 300 = 348 metres	B1Identifying odd nodes (or by implication)M1For their 48 + 300 (or their 300)A1[3]348 (cao)
(ii)	Odd nodes A, B, H, J AB = 24 $AH = 37$ $AJ = 48HJ = 11$ $BJ = 38$ $BH = 34Repeat AB and HJ = 35300 - 30 = 270$ metres Shortest distance = $270 + 35 = 305$ metres	B1Identifying odd nodes (or by implication)B1For distances from A – or from their DijkstraB1For distances HJ, BJ, BH correctM1Choosing their least pairing or by implicationM1Or by implicationA1[6]305 (cao)