Q 1
mark

M1 uvast leading to u with $t=3$ or $t=6$
A1 Signs consistent
M1 uvast leading to s with $t=3$ or $t=6$ or their u
F1 FT their u if used with $t=3$. Signs consistent.
Award for 44.1, 132.3 or 176.4 seen.
[Award maximum of 3 if one answer wrong]

Q 2
mark

M1 Accept $\sqrt{-6^{2}+13^{2}}$
A1

B1 May not be explicit. If diagram used it must have correct orientation. Give if final angle correct.
M1 Use of $\arctan \left(\pm \frac{8}{3}\right)$ or $\arctan \left(\pm \frac{3}{8}\right)\left(\pm 20.6^{\circ}\right.$ or $\pm 69.4^{\circ}$) or equivalent on their resultant

A1 cao. Do not accept -21°.
(iii) $\binom{-3}{5}=5 \mathbf{a}$
so ($-0.6 \mathbf{i}+\mathbf{j}$) $\mathrm{m} \mathrm{s}^{-2}$
change in velocity is $(-6 \mathbf{i}+10 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$

M1 Use of N2L with accn used in vector form
A1 Any form. Units not required. isw.
F1 10a seen. Units not required. Must be a vector.
[SC1 for $a=\sqrt{3^{2}+5^{2}} / 5=1.17$]

Q 3
mark
Sub
(i) $F=14000 \times 0.25$
so 3500 N
M1 Use of N2L. Allow $F=m g a$ and wrong mass. No extra forces.
A1
(ii) $4000-R=3500$ so 500 N
(iii) $1150-R_{\mathrm{T}}=4000 \times 0.25$
so 150 N
B1 FT F from (i). Condone negative answer.

M1 N2L applied to truck (or engine) using all forces required. No extras. Correct mass. Do not allow use of $F=m g a$. Allow sign errors.
A1 cao

M1 Attempt to find cpt of weight (allow wrong mass). Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$.

M1 May be implied. Correct mass. No extra forces. Must have resolved weight component. Allow $\sin \leftrightarrow \cos$
$14000 \mathrm{~g} \sin 3^{\circ}$
$=14000 \times 9.8 \times 0.0523359 \ldots=7180.49 \ldots$
so 7180 N (3 s. f.)
or
$D-500-14000 g \sin 3=14000 \times 0.25$
$D=11180.49 \ldots$ so extra is 7180 N (3 s. f.)

A1
M1 Attempt to find cpt of weight (allow wrong mass). Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$.
N2L with all terms present with correct signs and mass.
No extras. FT 500 N. Accept their $500+150$ for resistance. Must have resolved weight component. Allow $\sin \leftrightarrow \cos$.
A1 Must be the extra force.

Q 4
(i) either

Need \mathbf{j} cpt 0 so $18 t^{2}-1=0$
$\Rightarrow t^{2}=\frac{1}{18}$. Only one root as $t>0$
or
Establish sign change in \mathbf{j} cpt
Establish only one root
(ii) $\mathbf{v}=3 \mathbf{i}+36 t \mathbf{j}$

Need i cpt 0 and this never happens
(iii) $x=3 t$ and $y=18 t^{2}-1$

Eliminate t to give
$y=18\left(\frac{x}{3}\right)^{2}-1$
so $y=2 x^{2}-1$

Q 5
(i) $0^{2}=V^{2}-2 \times 9.8 \times 22.5$
$V=21$ so $21 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $28 \sin \theta=21$
so $\theta=48.59037 \ldots$
(iii) Time to highest point is $\frac{21}{9.8}=\frac{15}{7}$

Distance is $2 \times \frac{15}{7} \times 28 \times \cos (\operatorname{their} \theta)$..
79.3725... so 79.4 m (3 s. f.)
mark

M1 Need not solve
E1 Must establish only one of the two roots is valid

B1
B1

B1 Or equivalent (time of whole flight)
M1 Valid method for horizontal distance. Accept ½ time.
Do not accept 28 used for horizontal speed or vertical speed when calculating time.
B1 Horizontal speed correct
A1 cao. Accept answers rounding to 79 or 80.
[If angle with vertical found in (ii) allow up to full marks in (iii). If $\sin \leftrightarrow \cos$ allow up to B1 B1 M0 A1] [If $u^{2} \sin 2 \theta / g$ used then M1* Correct formula used. FT their angle. M1 Dep on *. Correct subst. FT their angle. A2 cao]

Q 6
(i) $0.5 \times 2 \times 12+0.5 \times 4 \times 12$
so 36 m
M1
A1

B1 cao

M1 Attempt at accn for $0 \leq t \leq 2$
B1 must be - ve or equivalent

M1 Use of uvast with 12 and 58.5

M1 Differentiation

A1

A1 cao

M1 Attempt to integrate
A1 At least one term correct
A1 All correct. Accept $+C$ omitted
A1* Clearly shown
A1 cao (award even if A1* is not given)

B1 Both calculated correctly from their s.
No further marks if their $s(2) \leq s(4)$
E1
E1 Do not need car going backwards throughout the interval.
B1 e.g. $v(3)=-1.125$
No further marks if their $v \geq 0$
E1
E1 Do not need car going backwards throughout the interval
[Award WW2 for 'car going backwards'; WW1 for velocity or displacement negative]

Q 7
(i) $T_{\mathrm{AB}} \sin \alpha=147$
so $T_{\mathrm{AB}}=\frac{147}{0.6}$
$=245$ so 245 N
(ii) $T_{\mathrm{BC}}=245 \cos \alpha$

$$
=245 \times 0.8=196
$$

(iii) Geometry of A, B and C and weight of B the same and these determine the tension
(iv)

either
Realise that 196 N and 90 N are horiz and vert forces where resultant has magnitude and line of action of the tension
$\tan \beta=90 / 196$
$\beta=24.6638$... so 24.7 (3 s. f.)
$T=\sqrt{196^{2}+90^{2}}$
$T=215.675 \ldots$ so 216 N (3 s. f.)
or
$\uparrow T \sin \beta-90=0$
$\rightarrow T \cos \beta-196=0$
Solving $\tan \beta=\frac{90}{196}=0.45918$...
$\beta=24.6638$... so 24.7 (3 s. f.)
$T=215.675 \ldots$ so 216 N (3 s. f.)
(v) Tension on block is 215.675.. N (pulley is smooth and string is light)

$$
M \times 9.8 \times \sin 40=215.675 \ldots+20
$$

$M=37.4128 \ldots$ so 37.4 (3 s. f.)
mark

M1 Attempt at resolving. Accept $\sin \leftrightarrow \cos$. Must have T resolved and equated to 147.

B1 Use of 0.6. Accept correct subst for angle in wrong expression.
A1 Only accept answers agreeing to $3 \mathrm{~s} . \mathrm{f}$.
[Lami: M1 pair of ratios attempted; B1 correct sub;A1] 3
M1 Attempt to resolve 245 and equate to T, or equiv
Accept $\sin \leftrightarrow \cos$
E1 Substitution of 0.8 clearly shown
[SC1 $245 \times 0.8=196$]
[Lami: M1 pair of ratios attempted; E1]
E1 Mention of two of: same weight: same direction AB : same direction BC
E1 Specific mention of same geometry \& weight or recognition of same force diagram

No extra forces.
B1 Correct orientation and arrows
B1 ' T ' 196 and 90 labelled. Accept 'tension' written out.

M1 Allow for only β or T attempted

B1 Use of $\arctan (196 / 90)$ or $\arctan (90 / 196)$ or equiv
A1
M1 Use of Pythagoras
E1

B1 Allow if $T=216$ assumed
B1 Allow if $T=216$ assumed
M1 Eliminating T, or...
A1 [If $T=216$ assumed, B 1 for β; B 1 for check in $2^{\text {nd }}$ E1 equation; E0]

B1 May be implied. Reasons not required.
M1 Equating their tension on the block unresolved ± 20 to weight component. If equation in any other direction, normal reaction must be present.
A1 Correct
A1 Accept answers rounding to 37 and 38

