Mark Scheme 4728 June 2006

1		Momentum before = $3M$ - 1200×3	B1		Ignore g if included; accept inconsistent directions
		Momentum after = 1200×5	B1		moonloident directione
					(or loss of momentum of
					loaded wagon = 3 <i>M</i>
					B1
					gain of momentum of
					unloaded wagon = 1200(5 + 3) B1)
		3M - 3600 = 6000	M1		Equation with all terms; accept with g
		3(1200 + m) - 3600 = 6000	A1		For any correct equation in <i>m</i> ,
		3(1200 : m)	, ()		M
		m = 2000	A1	5	
2	(i)		M1		For resolving forces in the i
					direction or for relevant use of
		_			trigonometry
		$2.5 = 6.5\sin\theta$	A1		
		$\theta = 22.6^{\circ}$	A1	3	AG Accept verification
	(ii)		M1		For resolving forces in the j
					direction or for using
					Pythagoras or relevant
		$R = 6.5\cos 22.6^{\circ}$	۸1		trigonometry.
		$R = 6.500822.6^{\circ}$	A1 A1	3	
<u></u>		N = 0	ΑI	<u>ა</u>	

	(:)				Line comment AD/>-t
3	(i)		B1		Line segment AB (say) of +ve slope from origin Line segment BC (say) of
			B1		steeper +ve slope and shorter time interval than those for <i>AB</i> . <i>SR</i> : If the straight line segments are joined by curves, this B1 mark is not awarded Line segment <i>CD</i> (say) of less steep slope compared with <i>BC</i> .
		$ \checkmark \rangle$			(An (x, t) graph is accepted and the references to more/less steep are reversed.)
		Time intervals 80, 40, 40 t = 80, 120, 160	B1 B1		May be implied; any 2 correct
	(ii)	Line joining (0, 0) and (160, 360)	B1 ft	6	
	(iii)	v = 360/160	M1 M1		Woman's velocity (= 2.25) For equation of man's displacement in relevant
		s = 120 + 4.5(t - 80)	A1		interval Accept omission of -80
		2.25 <i>t</i>	M1		Woman's displacement, awarded even if <i>t</i> is interpreted differently in man's expression
		$t = 106 \frac{2}{3}$ (107) SR Construction method	A1	5	Accept also 106.6, 106.7 but not 106
		Plotting points on graph paper t between 104 and 109 inclusive	M1 A1		Candidates reading the displacement intersection from graph, then dividing this distance by the woman's speed to find t , also get $v = 360/160$ M1 as above for the woman's velocity.
4	(i)	Displacement is 20 m	B1	1	20+c (from integration) B0
	(ii)	$s(t) = 0.01t^3 - 0.15t^2 + 2t$	M1 A1		For using $s(t) = \int v(t)dt$
		(+A) 10 - 15 + 20 + A = 20 Displacement is	M1		Can be awarded prior to cancelling For using $s(10) = cv(20)$
		$0.01t^3 - 0.15t^2 + 2t + 5$	A1	4	AG
	(iii)	a = 0.06t - 0.3 0.06t - 0.3 = 0.6	M1 A1 DM1		For using $a(t) = dv/dt$ For starting solving $a(t) = 0.6$ depends on previous M1
		t = 15 Displacement is 35 m	A1 B1	5	aspondo on promodo mi

5	(i)		M1		For using $F = 5$ and $F = \mu R$
	(-)	R = mg	M1		rer denig / e and / p//
		m = 2.55	A1	3	Accept 2.5 or 2.6
	(ii)a	$P\cos\alpha = 6$	B1	<u>v</u>	7.000pt 2.0 01 2.0
	(II)a		M1		For resolving vertically with 3 distinct forces
		$R = P\sin \alpha + 25$	A1ft		Or $P \sin \alpha + (\text{cv m})g$
		0.2R = 6	B1		For using $F = 6$ and $F = \mu R$.
					Can be implied by $0.2(P\sin\alpha + 25) = 6$
		$0.2(P\sin\alpha + 25) = 6$	M1		For an equation in $P\sin\alpha$ (=5)after elimination of R
		$\alpha = 39.8^{\circ}$	A1		Accept a r t 40°
	(ii)b	$P^2 = 6^2 + 5^2$	M1		For eliminating or substituting
		or $P\cos 39.8^{\circ} = 6$			for α with cv(6). Evidence is
		or $P \sin 39.8^{\circ} = 5$			needed that 5 is the value of
					P sin α (rather than the original
			١.,		frictional force)
	(1)	P = 7.81	A1	8	Accept a r t 7.8
6	(i)	10500 + 3000 + 1500	M1		For summing 3 resistances
		Driving force below 15000	A1	2	Accept generalised case or
	(ii)	gives retardation 35000 – 15000 = 80000a	M1		specific instance Newton's second law for
	(11)	35000 - 15000 - 80000a	IVII		whole train
		Acceleration is 0.25 ms ⁻²	A1	2	AG Accept verification
	(iii)		M1	T	For applying Newton's second law to <i>E</i> only, at least 2 forces out of the relevant 3.
		35000 - 10500 - 8500 = 0.25 <i>m</i>	A1		
		Mass is 64000 kg	A1	3	
	(iv)		M1		For applying Newton's second law with all appropriate forces
		-15000 – 15000 = 80000 <i>a</i>	A1		a = -0.375
		OR 2000 10500 15000 (80000			
		-3000-10500-15000=(80000 - m)a			
		mju	M1		For applying Newton's second law to <i>B</i> only, only 1 force
		-1500 = <i>ma</i>	A1		Or cv(a)
		Mass is 4000 kg	A1	5	 - <u></u> ₁₁
	(v)	-15000 - 10500 ± <i>T</i> = 64000(- 0.375)	B1ft		Follow through cv (m_E, a) , or accept use of m_E , a
		$T = \pm 1500 \Rightarrow$ forward force on <i>E</i> of 1500 N	B1	2	
		OR (working with A and B) $-1500 - 3000 \pm T$			Follow through cv (m_E , a), or
		= (80000 - 64000)(-	B1ft		accept use of $m_{\rm E}$, a
		0.375) $T = \pm 1500 \Rightarrow$ forward force	B1		
		on <i>E</i> of 1500	j		

7	(i)	$0 = 6 + (\pm)1.5a$	M1	For using $v = u + at$ with $v = 0$
			44	

	$a = (\mp)4\text{ms}^{-2}$ $-mg\sin 15^{\circ} - F = ma$ $-0.1 \times 9.8 \sin 15^{\circ} - F = 0.1 \times (-10.1 \times 9.8 \sin 15^{\circ})$	A1 M1		For applying Newton's second law with 2 forces
	4) $R = 0.1g\cos 15^{\circ}$ $0.146357 \dots = \mu 0.946607$	B1 M1		For using $F = \mu R$
	Coefficient is 0.155	A1	7	Anything between 0.15 and 0.16 inclusive
(ii)	mg sin15° > μ mg cos15° (or tan 15° > μ)	M1		For comparing weight component with frictional force (or tan 'angle of friction' with μ)
	→ particle moves down	A1	2	Awarded if conclusion is correct even though values are wrong
(iii)	$(6 + 0) \div 2 = s \div 1.5$ s = 4.5	M1 A1		For using $(u + v) \div 2 = s \div t$
	mgsin15° – $F = ma$	M1		For using Newton's second law with 2 forces
	0.25364 0.146357 = 0.1 <i>a</i>	A1		Values must be correct even if not explicitly stated. Note that the correct value of friction may legitimately arise from a wrong value of μ and a wrong
	$v^2 = 2(1.07285)4.5$	M1		value of R For using $v^2 = 2as$ with any value of a
	Speed is 3.11 ms ⁻¹	A1	6	Accept anything rounding to 3.1 from correct working