Mark Scheme 4766 June 2006

Q1			
(i)	8 7 6 7 6 7 9 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	G1 Labelled linear scales G1 Height of lines	
<i>(</i> ii)	Nogativo (skowposs)	R1	2
(iii)	$\frac{1}{2}$	B1	1
(,	$S_{xx} = 681 - \frac{123^2}{25} = 75.84$ M.s.d = $\frac{75.84}{25} = 3.034$	M1 for S_{xx} attempted A1 FT their 4.92	3
(iv)	Total for 25 days is 123 and totals for 31 days is 155. Hence total for next 6 days is 32 and so mean = 5.33	M1 31 x 5 – 25xtheir 4.92 A1 FT their 123	2
		TOTAL	_
		TOTAL	8
Q2 (i)	$\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B \mid A) = \frac{7}{10} \times \frac{3}{7}$	M1 Product of these fractions	8
Q2 (i)	$P(A \cap B) = P(A)P(B A) = \frac{7}{10} \times \frac{3}{7}$ $\rightarrow P(A \cap B) = 0.3$ o.e.	M1 Product of these fractions	8
Q2 (i) (ii)	$P(A \cap B) = P(A)P(B A) = \frac{7}{10} \times \frac{3}{7}$ $\rightarrow P(A \cap B) = 0.3$ o.e. A (.4 (.3 .2 .1)) A (.4 (.3 .1)) A (.4 (.	M1 Product of these fractions A1 B1FT either 0.4 or 0.2 in correct place B1FT all correct and labelled	2
Q2 (i) (ii) (iii)	$P(A \cap B) = P(A)P(B A) = \frac{7}{10} \times \frac{3}{7}$ $\rightarrow P(A \cap B) = 0.3$ o.e. $A \qquad \qquad$	M1 Product of these fractions A1 B1FT either 0.4 or 0.2 in correct place B1FT all correct and labelled E1 Correct comparison	2
Q2 (i) (ii) (iii)	$P(A \cap B) = P(A)P(B A) = \frac{7}{10} \times \frac{3}{7}$ $\rightarrow P(A \cap B) = 0.3$ o.e. $A \qquad (.4 \qquad .3 \qquad .2 \qquad .1$ $P(B A) \neq P(B), 3/7 \neq 0.5$ Unequal so not independent	M1 Product of these fractions A1 B1FT either 0.4 or 0.2 in correct place B1FT all correct and labelled E1 Correct comparison E1 <i>dep</i> for 'not independent'	8 2 2 2
Q2 (i) (ii) (iii) (iv)	$P(A \cap B) = P(A)P(B A) = \frac{7}{10} \times \frac{3}{7}$ $\rightarrow P(A \cap B) = 0.3$ o.e. $A \qquad \qquad$	M1 Product of these fractions A1 B1FT either 0.4 or 0.2 in correct place B1FT all correct and labelled E1 Correct comparison E1 <i>dep</i> for 'not independent' E1 for comparison	8 2 2 2
Q2 (i) (ii) (iii) (iv)	$P(A \cap B) = P(A)P(B A) = \frac{7}{10} \times \frac{3}{7}$ $\rightarrow P(A \cap B) = 0.3$ o.e. $A \qquad \qquad$	N1 Product of these fractions A1 B1FT either 0.4 or 0.2 in correct place B1FT all correct and labelled E1 Correct comparison E1 dep for 'not independent' E1 for comparison E1 dep	8 2 2 2 2

Q3 (i)	P(X = 1) = 7k, $P(X = 2) = 12k$, $P(X = 3) = 15k$, $P(X = 4) = 16k50k = 1$ so $k = 1/50$	M1 for addition of four multiples of <i>k</i>	2
		A1 ANSWER GIVEN	
(ii)	$E(X) = 1 \times 7k + 2 \times 12k + 3 \times 15k + 4 \times 16k = 140k = 2.8$ OR $E(X) = 1 \times \frac{7}{50} + 2 \times \frac{12}{50} + 3 \times \frac{15}{50} + 4 \times \frac{16}{50} = \frac{140}{50} = \frac$	M1 for Σxp (at least 3 terms correct) A1 CAO	
	$Var(X) = 1 \times 7k + 4 \times 12k + 9 \times 15k + 16 \times 16k - 7.84 = 1.08$ OR Var(X) = 1 × ⁷ / ₅₀ + 4 × ¹² / ₅₀ + 9 × ¹⁵ / ₅₀ + 16 × ¹⁶ / ₅₀ - 7.84 = 8.92 - 7.84 = 1.08	M1 $\Sigma x^2 p$ (at least 3 terms correct) M1 <i>dep</i> for – their E(X) ² NB provided Var(X) > 0 A1 FT their E(X)	5
		TOTAL	7
Q4 (i)	4 x 5 x 3 = 60	M1 for 4 x 5 x 3 A1 CAO	2
(ii)	$(\mathbf{A}) \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 6$	B1 ANSWER GIVEN	
	(B) $\binom{4}{2}\binom{5}{2}\binom{3}{2} = 180$	B1 CAO	2
(iii)	(A) 1/5	B1 CAO	
	(B) $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3} = \frac{2}{5}$	M1 for $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3}$	3
		A1	
		TOTAL	7
Q5	$P(X = 2) = {\binom{3}{2}} \times 0.87^2 \times 0.13 = 0.2952$	M1 0.87 ² x 0.13	
(i)		M1 $\binom{3}{2}$ x p^2q with p+q=1 A1 CAO	3
(ii)	In 50 throws expect 50 (0.2952) = 14.76 times	B1 FT	1
(iii)	P (two 20's twice) = $\binom{4}{2} \times 0.2952^2 \times 0.7048^2 = 0.2597$	M1 $0.2952^2 \times 0.7048^2$ A1 FT their 0.2952	2
		TOTAL	6

Q6 (i)	0.95 0.9 0.9 0.9 0.1 Fake 0.2 0.8 Negative Negative	G1 for left hand set of branches fully correct including labels and probabilities G1 for right hand set of branches fully correct	2
(ii)	P (test is positive) = (0.9)(0.95) + (0.1)(0.2) = 0.875	M1 Two correct pairs added A1 CAO	2
(iii)	P (test is correct) = $(0.9)(0.95) + (0.1)(0.8) = 0.935$	M1 Two correct pairs added A1 CAO	2
(iv)	P (Genuine Positive)	M1 Numerator	
	= 0.855/0.875	M1 Denominator	
	= 0.977	ATCAO	3
(v)	P (Fake Negative) = 0.08/0.125 = 0.64	M1 Numerator M1 Denominator A1 CAO	3
(vi)	EITHER: A positive test means that the painting is almost certain to be genuine so no need for a further test.	E1FT	
	However, more than a third of those paintings with a negative result are genuine so a further test is needed.	E1FT	2
	NOTE: Allow sensible alternative answers		
(vii)	P (all 3 genuine) = $(0.9 \times 0.05 \times 0.96)^3$	M1 for 0.9 x 0.05 (=0.045)	
	$= (0.045 \times 0.96)^3$	M1 for complete correct	Δ
	$= (0.0432)^3$	M1 <i>indep</i> for cubing	
	= 0.0000806	A1 CAO	
		TOTAL	18

		TOTAL	18
	(<i>C</i>)2 does not lie in the critical region.So there is insufficient evidence to reject the null hypothesis and we conclude that it seems that 10% of rocks in this area contain fossils.	M1 for comparison A1 for conclusion in context	2
	(B) Let $X \sim B(30, 0.1)$ $P(X \le 0) = 0.0424 < 5\%$ $P(X \le 1) = 0.0424 + 0.1413 = 0.1837 > 5\%$ So critical region consists only of 0.	M1 for attempt to find $P(X \le 0)$ or $P(X \le 1)$ using binomial M1 for both attempted M1 for comparison of either of the above with 5% A1 for critical region dep on both comparisons (NB Answer given)	4
(111)	(A) Let $p = probability of a randomly selected rockcontaining a fossil (for population)H0: p = 0.1H1: p < 0.1$	B1 for H_0 B1 for H_1	3
(:::)	NOTE: $n = 16$ unsupported scores SC1 only	B1 for definition of n	3
	Trial with 0.9^{15} or 0.9^{16} or 0.9^{17} 1 - 0.9 ¹⁵ = 0.7941 < 0.8 and 1 - 0.9 ¹⁶ = 0.8147 > 0.8 Minimum $n = 16$	M1 A1 CAO	
	Minimum $n = 16$ OR (using trial and improvement):	A1 CAO M1	
(ii)	EITHER: $1 - 0.9^n \ge 0.8$ $0.9^n \le 0.2$	M1 for 0.9 ⁿ M1 for inequality	
	(B) $P(X \ge 1) = 1 - 0.1216 = 0.8784$	M1 P(X=0) provided that $P(X \ge 1)=1-P(X \le 1)$ not seen M1 1-P(X=0) A1 CAO	3
	OR from tables $0.3917 - 0.1216 = 0.2701$	OR: M2 for 0.3917 – 0.1216 A1 CAO	3
		M1 $\begin{pmatrix} 20\\ 1 \end{pmatrix}$ x pq^{19} A1 CAO	
Q7 (i)	$X \sim B(20, 0.1)$ (A) $P(X = 1) = {\binom{20}{2}} \times 0.1 \times 0.9^{19} = 0.2702$	M1 0.1 x 0.9 ¹⁹	