Mark Scheme 4732 June 2006

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise 2 sfs only once in paper.

Penalise	2 sfs only once in <u>paper</u> .			
1(i)	Negative, because (grad or coeff of x in 1^{st}			Neg because x incr & y decr
	equn or x-value or reg coeff or B or -0.6) is			
	negative	B1	1	
(ii)	$x = -1.6 \times 7.0 + 21$	M1		Sub $y=7.0$ in 2^{nd} eqn. Allow 1 sign error
(11)	x = 9.8	1,11		If sub in both must choose 2nd
	$\lambda = 2.0$	A1	2	ii suo iii ootii must enoose zha
		AI	4	
(iii)	y = -0.6(-1.6y + 21) + 13 or similar	M1		Obtain correct eqn in 1 variable.
(111)	y = -0.0(-1.0y + 21) + 15 of similar	IVII		Allow 1 num'l error
	= -5 = -10	A1A1	3	Allow without bars
	$\overline{x} = 5, \ \overline{y} = 10$	_	3	Allow without bars
Total		6		
	In qus 2 & 3 "prod" means		of tv	vo probabilities"
2(i)	⁴ / ₇ or 0.571 (3 sfs)	B1	1	
	15, 4, 3, 5,	3.543.54		
(ii)	$^{5}/_{8} \times ^{4}/_{7} + ^{3}/_{8} \times ^{5}/_{8}$	M1M1		M1: one correct prod or add any two prods
	265			M1: all correct
	$= {}^{265}/_{448}$ or 0.592 (3 sfs)	A1	3	
(iii)	$^{3}/_{8} \times ^{5}/_{8} + ^{5}/_{8} \times ^{3}/_{7}$	M1M1		M1: one correct prod or add any two prods
				M1: all correct
	$= {}^{225}/_{448}$ or 0.502 (3 sfs)	A1	3	
Total		7		
3(i)	7!	M1M1		M1: $7!/(a \text{ factorial}); \text{ or } \div (3! \times 2(!))$
	3! x 2(!)			M1: all correct
	= 420	A1	3	
(ii)	<u>5!</u>	M1	-	M1: 5! seen (not part of a C) or 5 x 4!
	2(!)			or 120 seen or $\dots \div 2(!)$ alone
	= 60	A1	2) , ,
(iii)	$1 - \frac{4}{7} \times \frac{3}{6}$ or $1 - \frac{4}{7} \cdot \frac{7}{6} \cdot \frac{7}{7} \cdot \frac{7}{6} = \frac{4}{7} \cdot \frac{7}{7} \cdot \frac{7}{6} = \frac{4}{7} \cdot \frac{7}{6} \cdot \frac{7}{16} = \frac{4}{7} \cdot \frac{7}{16} = \frac$	M1M1		M1:1– prod or 1/ 7 C ₂ or 1– 4 C ₂ / (or Ps)
	or $\frac{3}{7}$ x $\frac{2}{6}$ + $\frac{3}{7}$ x $\frac{4}{6}$ + $\frac{4}{7}$ x $\frac{3}{6}$ oe			or add 3 prods or add 2 correct prods
	or ${}^{3}C_{2} / {}^{7}C_{2} + {}^{3}C_{1}x^{4}C_{1} / {}^{7}C_{2}$			or ${}^{3}C_{2} / {}^{7}C_{2}$ or ${}^{3}C_{1}x^{4}C_{1} / {}^{7}C_{2}$
				or add > 5 out of 7 correct prods
				M1: all correct
	$= \frac{5}{7}$ or 0.714 (3 sfs)	A1	3	
Total		8		

4(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		B1		or 1 – 0.6167 or 0.3833 (3 sfs)		
	or 0.8 ²³ +25x0.8 ²⁴ 0.579(3)	B1	2	or 1- (6 correct terms, 0 to 5)			
(ii)	10 C ₃ x $(1-0.27)^7$ x 0.27^3		M1				
	= 0.261 (3 sfs)		A1	2			
(iii)		Allow "=" thro'out			or $1 - {}^{n}C_{0} \times 0.27^{0} \times 0.73^{n} > 0.95$ oe		
()		$1 - 0.73^n > 0.95$			allow incorrect sign M1		
	$0.73^9 = 0.059$	or $0.73^n < 0.05$	M1		must be correct		
	$0.73^{10} = 0.043$	$n\log 0.73 < \log 0.05$ oe	M1		ft ($1 - 0.27$) from (ii) for M1M1		
					10 with incorrect sign in wking: SCB2		
	n = 10		A1	3	10 with just $0.73^9 = 0.059$: M1M1A1		
Total	<i>n</i> –	- 10	7	3			
5(i)	$^{1}/_{3} + ^{1}/_{4} + p + q =$: 1 oe	B1				
	$0 \times 1/_3 + 1 \times 1/_4 + 2p + 3q = 1^1/_4$ oe		B1				
	1'66	· · · · · · · · · · · · · · · · · · ·	N/1		all and a second of the control of		
	equalize coeffs, eg mult eqn (i) by 2 or 3 Or make p or q subject of (i) or (ii) $p = {}^{1}/_{4}, q = {}^{1}/_{6}$ oe		M1		allow one error. ft their equns subst or subtr not nec'y		
			A1A1	5	subst of subtract thee y		
	r ++++ + + + + + + + + + + + + + + + +						
(ii)	$\sum x^2 p$ (not /4 or	r /3 etc) $(=2^3/_4)$	M1		\geq 2 non-zero terms correct. dep +ve result		
	$-(1^{1}/_{4})^{2}$		M1		indep if +ve result		
					or $(x-1^{1}/4)^{2}p$		
					(\geq 2 (non-0) terms correct): M2 ft (i) (0< p , q <1) or letters p , q both M1s		
	$= 1.1875$ or $1^3/$	16 00	A1		cao		
		75) = 1.09 (3 sfs)	B1f	4	dep 1st M1 & $\sqrt{\text{(+ve no.)}}$ eg $\sqrt{2.75} = 1.66$		
Total			9				

6(i)(a)	Ranks: 2 4 7 5 3 1 6 6 4 1 3 5 7 2	M1		\geq 5 ranks correct in each set
	7 1 6 3 2 5 4 1 7 2 5 6 3 4	A1		all correct
	$\sum d^2$	M1		dep ranks attempted even if opp orders,
	(=60)			allow arith errors
	$r_{\rm s} = 1 - \frac{6 \times 60}{7 \times 48}$	M1		Correct formula with $n = 7$, dep 2^{nd} M1
	7×48			1 0 1
				calc r for ranks: $\frac{110.29^2}{7}$
				$S_{xx} = S_{yy} = 140 - 28^2/7$. $S_{xy} = 110 - 28^2/7$ (= 28) (= -2)
				corr subst in one corr S (any version):M1
				corr subst in $r = S_{xy} / \sqrt{(S_{xx}S_{yy})}$:M1
	$= -\frac{1}{14}$ or -0.071 (3 dps)	A1	5	$S_{XY} = S_{XY} + V(S_{XX}S_{YY}) $
				-0.07 without wking: M1A1M2A0
				No mks unless $ r_s \le 1$
(b)	Little (or no) connection (agreement,			ft their r_s
	rel'nship) between dist and commission			Must refer to context.
	Allow disagreement			Not "little corr'n between dist and
		B1ft	1	com"
				not "strong disagreement"
(c)	Unchanged. No change in rank	DIDI	_	Ignore other comment
	Chemangea. 140 change in rank	B1B1	2	
(ii)(a)	= –1	B1	1	indep
(b)	Close to -1 or, eg ≈ -0.9	B1		cao
				not referring to "corr'n" rather than r
				allow "neg", not neg corr'n or neg skew
Total		10		

7(i)				Correct (149.5)	With 150	Tot =
, (1)	Midpoints attempted ≥ 2 classes	M1		<u>Correct (1 17.5)</u>	<u> </u>	$\frac{100}{2000}$
	$\sum xf/100 \text{ or } \sum xf/\sum f \text{ attempted } \ge 2 \text{ terms}$	M1				====
	x within class, not class width			2720.5/100	2725/100	Allow
	Mean = 27.2 (to 3 sfs) (not 27.25)			. = 5.5, 200		Ms
	art 27.2 from fully correct wking	A1				-
	$\sum r^2 f$ or $\sum r - \overline{r} r^2 f$ > 2 terms	M1				& poss
	$\sum x^2 f \text{or} \sum x - \overline{x})^2 f \ge 2 \text{ terms}$ $\sqrt{(\sum x^2 f / 100 - \overline{x}^2)} \text{ or } \sqrt{((\sum x - \overline{x})^2 f / 100)} \text{ or}$	IVII				As
	$\sqrt{\sum}f$	M1				
	fully corr method, not \/neg	IVII		27.2	27.25	
	•	A1	6	240702.25	242050	
	= 40.5 to 41.1 (3 sfs)			40.82	40.96	
	st a constant			allow class widths	for 2nd M1 or	nly
(ii)	Recog LQ in 1 st class & UQ in 3 rd class	B1				
	Graph: Interp:					
	Attempt $25(.25)^{th}$ value $LQ = 3.0$ to 4.3					
	Attempt 75(.75) th value $UQ = 27$ to 29	M1		both nec'y		
				•		
	Subtract	M1		dep B1or M1		
	IQR = 23 or 24 or 25	A1	4	integer. dep M2		
(iii)(a)	Increase	B1	1			
(b)	Increase No change	B1	1	Ignore "probably" etc		
(c) Total	No change	B1 13	1			
1 Otal		13	'			
8(i)	Geometric.					
	Each attempt (or result or try) indep	B1	2			
				extra		
	 <u>-</u> <u>-</u>	M2			,	
(ii)(a)				$(^{2}/_{3})^{2}x^{1}/_{3}$ or $(^{2}/_{3})^{4}x^{1}/_{3}$: allow other numerical " p " (0< p <1):M1		
	$=$ $^{8}/_{81}$ or 0.0988 (3 sfs)	A1	3			
(b)	$(^{2}/_{2})^{3}$	M1		not $(^2/_3)^3$ x		
	$\binom{2}{3}^3$ 1 - $\binom{2}{3}^3$	M1		or $\frac{1}{3} + \frac{2}{3}x^{1/3} + \frac{2}{3}x^{1/3}$ M2		
	· ·			$1 - (^2/_3)^4$ or $1 - (^{\circ}$		M1
				or 3 terms, with 2		M1
				or 3 correct terms		M1
				or "p" + "qp" + "q		M1
	$= \frac{19}{27}$ or 0.704 (3sfs)	A1	3	or $1 - \text{sum of } 3 \text{ co}$	orrect terms neans num val	M1
	- 121 01 0.10 1 (3818)	AI	3	<i>p</i> 1	ncans num val	uc, 110t /3
(iii)	3		1	or ¹ / _{"p} "		
						
(iv)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		ft (b) for M1M1 n		
	$(^{\circ}/_{27})^2 \times {^{19}/_{27}} 0.2963^2 \times 0.7037$	M1		Allow figs rounde	ed to 2 sfs for N	41M1
	$=\frac{1216}{19683}$ = 0.0618 (3 sfs)	A 1	2	ano allow ant 0.00	518 or 0.0617	
	$- /_{19683} = 0.0018 (3 SIS)$	A1	3	cao. allow art 0.06	01.001/	
Total		12	;			

Total 72 marks