OXFORD CAMBRIDGE AND RSA EXAMINATIONS

 Advanced Subsidiary General Certificate of Education

 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

 Advanced General Certificate of Education}

MATHEMATICS

4722

Core Mathematics 2

Tuesday

6 JUNE 2006
Afternoon
1 hour 30 minutes
Additional materials:
8 page answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find the binomial expansion of $(3 x-2)^{4}$.

2 A sequence of terms $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=2 \quad \text { and } \quad u_{n+1}=1-u_{n} \text { for } n \geqslant 1
$$

(i) Write down the values of u_{2}, u_{3} and u_{4}.
(ii) Find $\sum_{n=1}^{100} u_{n}$.

3 The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{-\frac{1}{2}}$, and the curve passes through the point $(4,5)$. Find the equation of the curve.

The diagram shows the curve $y=4-x^{2}$ and the line $y=x+2$.
(i) Find the x-coordinates of the points of intersection of the curve and the line.
(ii) Use integration to find the area of the shaded region bounded by the line and the curve.

5 Solve each of the following equations, for $0^{\circ} \leqslant x \leqslant 180^{\circ}$.
(i) $2 \sin ^{2} x=1+\cos x$.
(ii) $\sin 2 x=-\cos 2 x$.

6 (i) John aims to pay a certain amount of money each month into a pension fund. He plans to pay $£ 100$ in the first month, and then to increase the amount paid by $£ 5$ each month, i.e. paying $£ 105$ in the second month, $£ 110$ in the third month, etc.

If John continues making payments according to this plan for 240 months, calculate
(a) how much he will pay in the final month,
(b) how much he will pay altogether over the whole period.
(ii) Rachel also plans to pay money monthly into a pension fund over a period of 240 months, starting with $£ 100$ in the first month. Her monthly payments will form a geometric progression, and she will pay $£ 1500$ in the final month.

Calculate how much Rachel will pay altogether over the whole period.

The diagram shows a triangle $A B C$, and a sector $A C D$ of a circle with centre A. It is given that $A B=11 \mathrm{~cm}, B C=8 \mathrm{~cm}$, angle $A B C=0.8$ radians and angle $D A C=1.7$ radians. The shaded segment is bounded by the line $D C$ and the arc $D C$.
(i) Show that the length of $A C$ is 7.90 cm , correct to 3 significant figures.
(ii) Find the area of the shaded segment.
(iii) Find the perimeter of the shaded segment.

8 The cubic polynomial $2 x^{3}+a x^{2}+b x-10$ is denoted by $\mathrm{f}(x)$. It is given that, when $\mathrm{f}(x)$ is divided by $(x-2)$, the remainder is 12 . It is also given that $(x+1)$ is a factor of $\mathrm{f}(x)$.
(i) Find the values of a and b.
(ii) Divide $\mathrm{f}(x)$ by $(x+2)$ to find the quotient and the remainder.

[Question 9 is printed overleaf.]

9 (i) Sketch the curve $y=\left(\frac{1}{2}\right)^{x}$, and state the coordinates of any point where the curve crosses an axis.
(ii) Use the trapezium rule, with 4 strips of width 0.5 , to estimate the area of the region bounded by the curve $y=\left(\frac{1}{2}\right)^{x}$, the axes, and the line $x=2$.
(iii) The point P on the curve $y=\left(\frac{1}{2}\right)^{x}$ has y-coordinate equal to $\frac{1}{6}$. Prove that the x-coordinate of P may be written as

$$
\begin{equation*}
1+\frac{\log _{10} 3}{\log _{10} 2} . \tag{4}
\end{equation*}
$$

