Mark Scheme 4751 June 2007 Section A

~~~~				
1	x > -0.6 o.e. eg $-3/5 < x$ isw	3	M2 for $-3 < 5x$ or $x > \frac{3}{5}$ or M1 for	
			$-5x < 3$ or $k < 5x$ or $-3 < kx$ [condone $\le$ for Ms]; if 0, allow SC1 for $-0.6$ found	3
2	$t = [\pm] \sqrt{\frac{2s}{a}} \text{ o.e.}$	3	B2 for <i>t</i> omitted or $t = \sqrt{\frac{s}{\frac{1}{2}a}}$ o.e.	
			M1 for correct constructive first step in rearrangement and M1 (indep) for finding sq rt of their $t^2$	3
3	'If 2 <i>n</i> is an even integer, then <i>n</i> is an odd integer'	1	or: $2n$ an even integer $\Rightarrow n$ an odd integer	
	showing wrong eg 'if $n$ is an even integer, $2n$ is an even integer'	1	or counterexample eg $n = 2$ and $2n = 4$ seen [in either order]	2
4	<i>c</i> = 6	1		
	k = -7	2	M1 for $f(2) = 0$ used or for long division as far as $x^3 - 2x^2$ in working	3
5	(i) $4x^4y$	2	M1 for two elements correct: condone $v^1$	5
•		2	$(a)^{5}$	
	(ii) 32	2	M1 for $\left(\frac{2}{1}\right)^{5}$ or $2^{5}$ soi or $\left(\frac{1}{32}\right)^{5}$ or $\frac{1}{\frac{1}{32}}$	4
6	$-720 [x^3]$	4	B3 for 720; M1 for each of $3^2$ and $\pm 2^3$ or $(-2x)^3$ or $(2x)^3$ .	
			and M1 for 10 or $(5\times4\times3)/(3\times2\times1)$ or for	
			1 5 10 10 5 1 seen but not for ${}^{5}C_{3}$	4
7	-5	3	M1 for $4x + 5 = 2x \times -3$ and	
	$\frac{1}{10}$ o.e. isw		M1 for $10x = -5$ o.e. or M1 for	
	10		$2 + \frac{5}{2x} = -3$ and M1 for $\frac{5}{2x} = -5$ o.e.	3
8	(i) $2\sqrt{2}$ or $\sqrt{8}$	2	M1 for $7\sqrt{2}$ or $5\sqrt{2}$ seen	
	(ii) $30 - 12\sqrt{5}$	3	M1 for attempt to multiply num. and	
			denom. by $2 - \sqrt{5}$ and M1 (dep) for denom	5
			$-1$ or $4 - 5$ soi or for numerator $12\sqrt{5} - 30$	3
9	(i) ±5	2	B1 for one soln	
	(ii) $y = (r - 2)^2 - 4$ or $y = r^2 - 4r c c$	2	M1 if y omitted or for $y = (x + 2)^2 - 4$ or	
	$\begin{array}{c} (1) \ y = (x - 2)  \forall  \forall  y = x  \forall x  \forall  \forall  \forall  \forall  \forall  \forall  \forall  \forall$	-	$y = x^2 + 4x$ o.e.	4
10	(i) $\frac{1}{2} \times (x+1)(2x-3) = 9$ o.e.	M1	for clear algebraic use of $\frac{1}{2}$ <i>bh</i> ; condone	
			(x+1)(2x-3) = 18	
	$2x^2 - x - 3 = 18$ or $x^2 - \frac{1}{2}x - \frac{3}{2} = 9$	A1	allow <i>x</i> terms uncollected.	
			NB ans $2x^2 - x - 21 = 0$ given	
	(ii) $(2x-7)(x+3)$	B1	NB B0 for formula or comp. sq.	
	-3 and $7/2$ o.e. or ft their factors	B1	if factors seen, allow omission of $-3$	
	base 4, height 4.5 o.e. cao	B1	B0 if also give $b = -9$ , $h = -2$	5

Section B

Deen					
11	i	grad AC = $\frac{7-3}{3-1}$ or 4/2 o.e.[ = 2]	M1	not from using $-\frac{1}{2}$	
		so grad AT = $-\frac{1}{2}$	M1	or ft their grad AC [for use of $m_1m_2 = -1$ ]	
		eqn of AT is $y - 7 = -\frac{1}{2}(x - 3)$	M1	or subst (3, 7) in $y = -\frac{1}{2}x + c$ or in 2y + x = 17; allow ft from their grad of AT, except 2 (may be AC not AT)	
		one correct constructive step towards $x + 2y = 17$ [ans given]	M1	or working back from given line to $y = -\frac{1}{2}x + 8.5$ o.e.	4
	ii	x + 2(2x - 9) = 17	M1	attempt at subst for <i>x</i> or <i>y</i> or elimination	
		5x - 18 = 17 or $5x = 35$ o.e. x = 7 and $y = 5$ [so (7, 5)]	A1 B1	allow $2.5x = 17.5$ etc graphically: allow M2 for both lines correct or showing (7, 5) fits both lines	3
	iii	$(x-1)^{2} + (2x-12)^{2} = 20$ $5x^{2} - 50x + 125[=0]$ $(x-5)^{2} = 0$ equal roots so tangent (5, 1)	M1 M1 A1 B1	subst $2x - 9$ for y [oe for x] rearranging to 0; condone one error showing 5 is root and only root explicit statement of condition needed (may be obtained earlier in part) or showing line is perp. to radius at point of contact	
		(5, 1) or	21	= 0, y = 1	
		$y - 3 = -\frac{1}{2}(x - 1) \text{ o.e. seen}$ subst or elim. with $y = 2x - 9$ x = 5 (5.1)	M1 M1 A1 B1	or if $y = 2x - 9$ is tgt then line through C with gradient $-\frac{1}{2}$ is radius	
		showing (5, 1) on circle	B1	or showing distance between (1, 3) and $(5, 1) = \sqrt{20}$	5

Mark Scheme

12	i	$4(x-3)^2-9$	4	1 for $a = 4$ , 1 for $b = 3$ , 2 for $c = -9$ or	
				M1 for $27 - 4 \times 3^2$ or $\frac{27}{4} - 3^2 [= -\frac{9}{4}]$	4
	ii	min at $(3, -9)$ or ft from (i)	B2	1 for each coord [e.g. may start again and use calculus to obtain $x = 3$ ]	2
	iii	(2x-3)(2x-9)	M1	attempt at factorising or formula or use	
		<i>x</i> = 1.5 or 4.5 o.e.	A2	A1 for 1 correct; accept fractional equivs eg 36/8 and 12/8	3
	iv	sketch of quadratic the right way up	M1		
		crosses <i>x</i> axis at 1.5 and 4.5 or ft crosses <i>y</i> axis at 27	A1 B1	allow unsimplified shown on graph or in table etc; condone not extending to negative $x$	3
13	i	$2x^3 + 5x^2 + 4x - 6x^2 - 15x - 12$	1	for correct interim step; allow correct long division of $f(x)$ by $(x - 3)$ to obtain $2x^2 + 5x + 4$ with no remainder	
		3 is root use of $b^2 - 4ac$ $5^2 - 4 \times 2 \times 4$ or -7 and [negative] implies no real root	B1 M1 A1	allow $f(3) = 0$ shown or equivalents for M1 and A1 using formula or completing square	4
	ii	divn of $f(x) + 22$ by $x - 2$ as far as $2x^3 - 4x^2$ used $2x^2 + 3x - 5$ obtained (2x + 5)(x - 1) 1 and -2.5 o.e.	M1 A1 M1 A1 +A1	or inspection eg $(x - 2)(2x^25)$ attempt at factorising/quad. formula/ compl. sq.	
		or $2 \times 2^{3} - 2^{2} - 11 \times 2 - 12$ $16 - 4 - 22 - 12$ $x = 1$ is a root obtained by factor thm x = -2.5 obtained as root	M1 A1 B1 B2	<u>or</u> equivs using $f(x) + 22$ not just stated	5
	iii	cubic right way up crossing x axis only once (3, 0) and $(0, -12)$ shown	G1 G1 G1	must have turning points must have max and min below <i>x</i> axis at intns with axes or in working (indep of cubic shape); ignore other intns	3