Mark Scheme 4721 June 2007

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \left(4 x^{2}+20 x+25\right)-\left(x^{2}-6 x+9\right) \\
\& =3 x^{2}+26 x+16
\end{aligned}
\] \\
Alternative method using difference of two squares:
\[
\begin{aligned}
\& (2 x+5+(x-3))(2 x+5-(x-3)) \\
\& =(3 x+2)(x+8) \\
\& =3 x^{2}+26 x+16
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 3
\end{tabular} \& \begin{tabular}{l}
Square one bracket to give an expression of the form \(a x^{2}+b x+c\) \((a \neq 0, b \neq 0, c \neq 0)\) \\
One squared bracket fully correct \\
All 3 terms of final answer correct \\
M1 2 brackets with same terms but different signs \\
A1 One bracket correctly simplified \\
A1 All 3 terms of final answer correct
\end{tabular} \\
\hline \begin{tabular}{l}
\[
2(\mathrm{a})(\mathrm{i})
\] \\
(ii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Stretch \\
Scale factor 8 in y direction or scale factor \(1 / 2\) in x direction
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 2 \\
B1 1 \\
B1 \\
B1 2 \\
5
\end{tabular} \& \begin{tabular}{l}
Excellent curve for \(\frac{1}{x}\) in either quadrant \\
Excellent curve for \(\frac{1}{x}\) in other quadrant \\
SR B1 Reasonably correct curves in \(1^{\text {st }}\) and \(3^{\text {rd }}\) quadrants \\
Correct graph, minimum point at origin, symmetrical
\end{tabular} \\
\hline 3 (i)

(ii) \& \[
$$
\begin{aligned}
& 3 \sqrt{20} \text { or } 3 \sqrt{2} \sqrt{5} \times \sqrt{2} \text { or } \sqrt{180} \\
& \text { or } \sqrt{90} \times \sqrt{2} \\
& =6 \sqrt{5} \\
& 10 \sqrt{5}+5 \sqrt{5} \\
& =15 \sqrt{5}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 2 |
| M1 |
| B1 |
| A1 3 | \& | Correctly simplified answer |
| :--- |
| Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified cao |

\hline
\end{tabular}

$4 \text { (i) }$ (ii)	$\begin{aligned} & (-4)^{2}-4 \times k \times k \\ & =16-4 k^{2} \\ & 16-4 k^{2}=0 \\ & k^{2}=4 \\ & k=2 \\ & \text { or } k=-2 \end{aligned}$	M1 A1 2 M1 B1 B1 3 5	$\begin{aligned} & \text { Uses } b^{2}-4 a c \text { (involving } k \text {) } \\ & 16-4 k^{2} \end{aligned}$ Attempts $b^{2}-4 a c=0$ (involving k) or attempts to complete square (involving k)
$5 \text { (i) }$ (ii)		A1 2 M1 M1 A1 A1 4 6	Expression for length of enclosure in terms of x Correctly shows that area $=20 x-2 x^{2}$ AG Differentiates area expression Uses $\frac{d y}{d x}=0$
6	$\begin{aligned} & \text { Let } y=(x+2)^{2} \\ & y^{2}+5 y-6=0 \\ & (y+6)(y-1)=0 \\ & y=-6 \text { or } y=1 \\ & (x+2)^{2}=1 \\ & x=-1 \\ & \text { or } x=-3 \end{aligned}$	B1 M1 A1 M1 A1 A1 6 6	Substitute for $(x+2)^{2}$ to get $y^{2}+5 y-6(=0)$ Correct method to find roots Both values for y correct Attempt to work out x One correct value Second correct value and no extra real values
$7 \text { (a) }$ (b)	$\begin{aligned} & \mathrm{f}(x)=x+3 x^{-1} \\ & \mathrm{f}^{\prime}(x)=1-3 x^{-2} \end{aligned}$ $\frac{d y}{d x}=\frac{5}{2} x^{\frac{3}{2}}$ When $\begin{aligned} x=4, \frac{d y}{d x} & =\frac{5}{2} \sqrt{4^{3}} \\ & =20 \end{aligned}$	M1 A1 A1 A1 4 M1 B1 B1 M1 A1 5 9	Attempt to differentiate First term correct $x^{-2} \text { soi www }$ Fully correct answer Use of differentiation to find gradient $\begin{aligned} & \frac{5}{2} x^{\mathrm{c}} \\ & \mathrm{kx} x^{\frac{3}{2}} \\ & \sqrt{4^{3}} \text { soi } \end{aligned}$ SR If 0 scored for first 3 marks, award B1 if $\sqrt{4^{n}}$ correctly evaluated.

8 (i)	$\begin{aligned} & (x+4)^{2}-16+15 \\ & =(x+4)^{2}-1 \end{aligned}$	B1 M1 A1 3	$\begin{aligned} & a=4 \\ & 15-\text { their } a^{2} \\ & \text { cao in required form } \end{aligned}$
(ii)	($-4,-1$)	B1 ft B1 ft 2 M1 A1	Correct x coordinate Correct y coordinate Correct method to find roots $-5,-3$
(iii)	$\begin{aligned} & x^{2}+8 x+15>0 \\ & (x+5)(x+3)>0 \\ & x<-5, x>-3 \end{aligned}$	M1 A1 4	Correct method to solve quadratic inequality eg +ve quadratic graph $x<-5, x>-3$ (not wrapped, strict inequalities, no 'and')
9 (i)	$\begin{aligned} & (x-3)^{2}-9+y^{2}-k=0 \\ & (x-3)^{2}+y^{2}=9+k \\ & \text { Centre }(3,0) \\ & 9+k=4^{2} \\ & k=7 \end{aligned}$	B1 B1 M1 A1 4	$(x-3)^{2}$ soiCorrect centreCorrect value for k (may be embedded) Alternative method using expanded form: Centre $(-g,-f)$ Centre $(3,0)$ $4=\sqrt{f^{2}+g^{2}-(-k)}$ $k=7$$\quad$ M1$k=$
(ii)	$\begin{aligned} & (3-3)^{2}+y^{2}=16 \\ & y^{2}=16 \\ & y=4 \end{aligned}$	M1 A1	Attempt to substitute $\mathrm{x}=3$ into original equation or their equation $y=4$ (do not allow ± 4)
	$\begin{aligned} \text { Length of } A B & =\sqrt{(-1-3)^{2}}+(0-4)^{2} \\ & =\sqrt{32} \\ & =4 \sqrt{2} \end{aligned}$	M1 A1 ft A1 5	Correct method to find line length using Pythagoras' theorem $\sqrt{32}$ or $\sqrt{16+a^{2}}$ cao
(iii)	$\begin{aligned} & \text { Gradient of } A B=1 \text { or } \frac{a}{4} \\ & y-0=m(x+1) \quad \text { or } y-4=m \\ & (x-3) \\ & y=x+1 \end{aligned}$	B1 ft M1 A1 3	Attempts equation of straight line through their A or B with their gradient Correct equation in any form with simplified constants

10 (i)	$\begin{aligned} & (3 x+1)(x-5)=0 \\ & x=\frac{-1}{3} \text { or } x=5 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Correct method to find roots Correct brackets or formula Both values correct SR B1 for $\mathrm{x}=5$ spotted www
(ii)		B1	Positive quadratic (must be reasonably symmetrical)
		B1 B1 ft 3	y intercept correct both x intercepts correct
(iii)	$\frac{d y}{d x}=6 x-14$	M1*	Use of differentiation to find gradient of curve
	$\begin{aligned} & 6 x-14=4 \\ & x=3 \end{aligned}$	$\begin{array}{\|l} \text { M1* } \\ \text { A1 } \end{array}$	Equating their gradient expression to 4
	On curve, when $\mathrm{x}=3, \mathrm{y}=-20$	A1 ft	Finding y co ordinate for their x value
	$\begin{aligned} & -20=(4 \times 3)+c \\ & c=-32 \end{aligned}$	M1dep A1 6	N.B. dependent on both previous M marks
	$\frac{\text { Alternative method: }}{3 x^{2}-14 x-5=4 x+c}$		Equate curve and line (or substitute for x)
	$3 x^{2}-18 x-5-c=0$ has one solution	B1	Statement that only one solution for a tangent (may be implied by next line)
	$b^{2}-4 a c=0$		Use of discriminant $=0$
	$(-18)^{2}-(4 \times 3 \times(-5-c))=0$	M1	Attempt to use a, b, c from their equation
			Correct equation
		A1	$\mathrm{c}=-32$

