Mark Scheme 4721 June 2007

1	$(4x^2 + 20x + 25) - (x^2 - 6x + 9)$ = $3x^2 + 26x + 16$	M1		Square one bracket to give an expression of the form $ax^2 + bx + c$
				$(a \neq 0, b \neq 0, c \neq 0)$
		A1		One squared bracket fully correct
		A1	3	All 3 terms of final answer correct
	Alternative method using difference			
	$\frac{\text{of two squares:}}{(2x + 5 + (x - 3))(2x + 5 - (x - 3))}$			M1 2 brackets with same terms but
	-(3x+2)(x+8)			different signs
	= (3x + 2)(x + 6) = $3x^2 + 26x + 16$			A1 All 3 terms of final answer correct
2(a)(i)			3	
2 (a)(l)	n	B1		Excellent curve for $\frac{1}{x}$ in either
				quadrant
		B1	2	Excellent curve for $\frac{1}{x}$ in other quadrant
				SR B1 Reasonably correct curves in 1 st and 3 rd quadrants
(ii)		B1	1	
				Correct graph, minimum point at origin, symmetrical
	T T			
(b)	Stretch	B1		
	Scale factor 8 in y direction or scale factor ½ in x direction	В1	2	
			5	
3 (i)	$3\sqrt{20}$ or $3\sqrt{2}$ $\sqrt{5}$ \times $\sqrt{2}$ or $\sqrt{180}$	M1		
	or $\sqrt{90} \times \sqrt{2}$			
	$= 6\sqrt{5}$	A1	2	Correctly simplified answer
(ii)	$10\sqrt{5} + 5\sqrt{5}$	M1 B1		Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified
	$= 15\sqrt{5}$	A1	3	cao
			5	

4 (i)	$(-4)^2 - 4 \times k \times k$ = 16 - 4k ²	M1 A1	2	Uses $b^2 - 4ac$ (involving <i>k</i>) 16 - 4k ²
(ii)	$16 - 4k^2 = 0$	M1		Attempts $b^2 - 4ac = 0$ (involving <i>k</i>) or attempts to complete square (involving
	$k^2 = 4$			k)
	k = 2 or $k = -2$	В1 В1	3	
			5	
5 (i)	Length = $20 - 2x$	M1		Expression for length of enclosure in
		A1	2	terms of x Correctly shows that area = $20x - 2x^2$
	Area = $x(20 - 2x)$ = $20x - 2x^2$			AG
(ii)	$\underline{dA} = 20 - 4x$	M1		Differentiates area expression
	4x For max, 20 – 4x = 0			
	y Fork	N/1		Uses $\frac{dy}{dt} = 0$
	Area = 50	A1		dx
		A1	4	
6	$1 \text{ ot } y = (y + 2)^2$		6	Substitute for $(y + 2)^2$ to get
0	Let $y = (x + 2)$ $y^2 + 5y - 6 = 0$	ы		$y^2 + 5y - 6 (= 0)$
	(y + 6)(y - 1) = 0	M1 A1		Correct method to find roots Both values for y correct
	y = -6 or y = 1	М1		Attempt to work out x
	$(x + 2)^2 = 1$	A1		One correct value
	x = -1	A1	6	Second correct value and no extra real values
7 (a)	$f(x) = x + 3x^{1}$	M1	6	Attempt to differentiate
. (a)				
	$f'(x) = 1 - 3x^2$	A1		First term correct
		A1		x ⁻² soi www
		A1	4	Fully correct answer
(b)	$\frac{dy}{dy} = \frac{5}{3} x^{\frac{3}{2}}$	M1		Use of differentiation to find gradient
	dx = 2	B1		$\frac{5}{2}x^{c}$
		B1		$kx^{\frac{3}{2}}$
	When x = 4, $\frac{dy}{dx} = \frac{5}{2} \sqrt{4^3}$	M1		$\sqrt{4^3}$ soi
	= 20	A1	5	SR If 0 scored for first 3 marks, award
			9	B1 if $\sqrt{4^n}$ correctly evaluated.

8 (i)	(x + 4)2 - 16 + 15 = (x + 4) ² - 1	B1 M1 A1 3	a = 4 15 – their a^2
(ii)	(-4, -1)	B1 ft B1 ft 2	Correct x coordinate Correct y coordinate
		M1 A1	Correct method to find roots -5, -3
(iii)	$x^{2} + 8x + 15 > 0$ (x + 5)(x + 3) > 0	M1	Correct method to solve quadratic inequality eg +ve quadratic graph
	x < -5, x > -3	A1 4 9	x < -5, x > -3 (not wrapped, strict inequalities, no 'and')
9 (i)	$(x - 3)^2 - 9 + y^2 - k = 0$	B1	$(x-3)^2$ soi
	$(x - 3)^{2} + y^{2} = 9 + k$ Centre (3, 0)	B1	Correct centre
	$9 + k = 4^2$ k = 7	M1 A1 4	Correct value for <i>k</i> (may be embedded)
			Alternative method using expanded form:
			Centre $(-g, -t)$ M1 Centre $(3, 0)$ A1
			$4 = \sqrt{f^2 + g^2 - (-k)}$ M1
			k = 7 A1
(ii)	$(3 - 3)^2 + y^2 = 16$	M1	Attempt to substitute $x = 3$ into
	$y^2 = 16$ y = 4	A1	original equation or their equation $y = 4$ (do not allow ± 4)
	Length of AB = $\sqrt{(-1-3)^2} + (0-4)^2$	M1	Correct method to find line length using Pythagoras' theorem
	$=\sqrt{32}$	A1 ft	$\sqrt{32}$ or $\sqrt{16 + a^2}$
	$= 4\sqrt{2}$	A1 5	сао
(iii)	Gradient of AB = 1 or $\frac{a}{4}$	B1 ft	
	y - 0 = m(x + 1) or $y - 4 = m$	M1	Attempts equation of straight line
	(x - 3)	A1 3	through their A or B with their gradient Correct equation in any form with
	y = x + 1	12	simplified constants

10 (i)	(3x + 1)(x - 5) = 0 $x = \frac{-1}{3}$ or $x = 5$	M1 A1 A1 3	Correct method to find roots Correct brackets or formula Both values correct
			SR B1 for x = 5 spotted www
(ii)		B1	Positive quadratic (must be reasonably symmetrical)
	· · · · · · · · · · · · · · · · · · ·	B1	y intercept correct
		B1 ft 3	both x intercepts correct
(iii)	$\frac{dy}{dx} = 6x - 14$	M1*	Use of differentiation to find gradient of curve
	6x - 14 = 4 $x = 3$	M1* A1	Equating their gradient expression to 4
	On curve, when $x = 3$, $y = -20$	A1 ft	Finding y co ordinate for their x value
	-20 = (4 x 3) + c c = -32	M1dep A1 6	N.B. dependent on both previous M marks
	Alternative method:		
	$3x^2 - 14x - 5 = 4x + c$	IVI1	Equate curve and line (or substitute for x)
	$3x^2 - 18x - 5 - c = 0$ has one solution	B1	Statement that only one solution for a tangent (may be implied by next line)
	$b^2 - 4ac = 0$	M1	Use of discriminant = 0
	$(-18)^2 - (4 \times 3 \times (-5 - c)) = 0$	M1	Attempt to use a, b, c from their equation
	c = -32	A1	Correct equation
		A1 12	c = -32