Mark Scheme 4722 June 2007

1	(i) $u_2 = 12$ $u_3 = 9.6$, $u_4 = 7.68$ (or any exact equivs)	B1 B1√ 2	State $u_2 = 12$ Correct u_3 and u_4 from their u_2
	(ii) $S_{20} = \frac{15(1-0.8^{20})}{1-0.8}$ = 74.1	M1 A1 A1 3	Attempt use of $S_n = \frac{a(1-r^n)}{1-r}$, with $n = 20$ or 19 Obtain correct unsimplified expression Obtain 74.1 or better
	OR	M1	List all 20 terms of GP
		A2 5	Obtain 74.1
2	$\left(x + \frac{2}{x}\right)^4 = x^4 + 4x^3 \left(\frac{2}{x}\right) + 6x^2 \left(\frac{2}{x}\right)^2 + 4x \left(\frac{2}{x}\right)^3 + \left(\frac{2}{x}\right)^4$	M1*	Attempt expansion, using powers of x and $^2/_x$ (or
		M1* A1dep* A1	the two terms in their bracket), to get at least 4 terms Use binomial coefficients of 1, 4, 6, 4, 1 Obtain two correct, simplified, terms Obtain a further one correct, simplified, term
	$= x^4 + 8x^2 + 24 + \frac{32}{x^2} + \frac{16}{x^4} $ (or equiv)	A1 5	Obtain a fully correct, simplified, expansion
	OR	M1* M1*	Attempt expansion using all four brackets Obtain expansion containing the correct 5 powers only (could be unsimplified powers eg x^3 . x^{-1})
		A1dep* A1 A1	Obtain two correct, simplified, terms Obtain a further one correct, simplified, term Obtain a fully correct, simplified, expansion
3	$\log 3^{(2x+1)} = \log 5^{200}$	M1	Introduce logarithms throughout
	$(2x+1)\log 3 = 200\log 5$	M1 A1	Drop power on at least one side Obtain correct linear equation (now containing no powers)
	$2x + 1 = \frac{200 \log 5}{\log 3}$	M1	Attempt solution of linear equation
OR	x = 146	A1 5	Obtain $x = 146$, or better
	$(2x+1) = \log_3 5^{200}$ $2x+1 = 200\log_3 5$	M1 M1 A1 M1 A1	Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better
4	(i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$	M1	Attempt y-values for at least 4 of the $x = 1, 1.5, 2,$
		M1 A1	2.5, 3 only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv
	≈ 0.25 × 23.766 ≈ 5.94	A1 4	Obtain 5.94 or better (answer only is 0/4)
	(ii) This is an underestimateas the tops of the trapezia are below the curve	*B1 B1dep*B1 2	State underestimate Correct statement or sketch
		6	

				ا	
5	(i)	$3(1-\sin^2\theta) = \sin\theta + 1$ $3-3\sin^2\theta = \sin\theta + 1$	M1		Use $\cos^2 \theta = 1 - \sin^2 \theta$
		$3\sin^2\theta + \sin\theta - 2 = 0$	A1	2	Show given equation correctly
	(ii)	$(3\sin\theta - 2)(\sin\theta + 1) = 0$	M1		Attempt to solve quadratic equation in $\sin \theta$
		$\sin \theta = \frac{2}{3}$ or -1	A1		Both values of $\sin\theta$ correct
		$\theta = 42^{\circ}, 138^{\circ}, 270^{\circ}$	A1		Correct answer of 270°
			A1 A1√	5	Correct answer of 42° For correct non-principal value answer, following
			111 (their first value of θ in the required range
					(any extra values for θ in required range is max
					4/5) (radians is max 4/5)
					SR: answer only (or no supporting method) is B1
				7	for 42° , $B1$ for 138° , $B1$ for 270°
6	(a)	(i) $\int x^3 - 4x = \frac{1}{4}x^4 - 2x^2 + c$	M1		Expand and attempt integration
	` '	J	A1		Obtain $\frac{1}{4}x^4 - 2x^2$ (A0 if \int or dx still present)
			В1	3	+c (mark can be given in (b) if not gained here)
		(ii) $\left[\frac{1}{4}x^4 - 2x^2\right]_1^6$	M1		Use limits correctly in integration attempt (ie F(6)
					- F(1))
		$= (324 - 72) - (1/4 - 2)$ $= 253\frac{3}{4}$	A1	2	Obtain 253¾ (answer only is M0A0)
	(b)	$\int 6x^{-3} dx = -3x^{-2} + c$	В1		Use of $\frac{1}{x^3} = x^{-3}$
			M1		Obtain integral of the form kx^2
			A1	3	Obtain correct $-3x^{-2}$ (+ c) (A0 if \int or dx still present, but only penalise once
					in question)
				8	
7	(a)	$S_{70} = \frac{70}{2} \left\{ (2 \times 12) + (70 - 1)d \right\}$	M1		Attempt S_{70}
		35(24 + 69d) = 12915	A1 M1		Obtain correct unsimplified expression Equate attempt at S_{70} to 12915, and attempt to find
		33(24 + 09u) - 12913	IVII		d
OR		<i>d</i> = 5	A1	4	Obtain $d = 5$
		$\frac{70}{2}$ {12 + <i>l</i> } = 12915	M1		Attempt to find d by first equating $^{n}/_{2}(a+l)$ to
		1 257			12915
		l = 357 $12 + 69d = 357$	A1 M1		Obtain $l = 357$ Equate u_{70} to l
		d=5	A1		Obtain $d = 5$
	(b)	ar = -4	В1		Correct statement for second term
	•	$\frac{a}{1-r} = 9$	B1		Correct statement for sum to infinity
		$\frac{-4}{r} = 9 - 9r$ or $a = 9 - (9 \times \frac{-4}{a})$	M1		Attempt to eliminate either a or r
		$9r^2 - 9r - 4 = 0 a^2 - 9a - 36 = 0$	A1		Obtain correct equation (no algebraic
		(2 4)(2 1) 2 (3 2)(12) 2	3.44		denominators/brackets)
		(3r-4)(3r+1)=0 $(a+3)(a-12)=0$	M1		Attempt solution of three term quadratic equation
		$r = \frac{4}{3}, \ r = -\frac{1}{3}$ $a = -3, \ a = 12$	A1		Obtain at least $r = -\frac{1}{3}$ (from correct working only)
	Heno	$ce r = -\frac{1}{3}$	A1	7	Obtain $r = -\frac{1}{3}$ only (from correct working only)
				11	SR: answer only / T&I is B2 only
				11	

8	(i)	<u>1</u> × .	$AB^2 \times 0.9 = 16.2$	M1		Use $\left(\frac{1}{2}\right)r^2\theta = 16.2$
	(-)	2 ^ 2	$AB^2 = 36 \Rightarrow AB = 6$	A1	2	Confirm $AB = 6$ cm (or verify $\frac{1}{2}$ x 6^2 x $0.9 =$
					5.2)	``
	(ii)	$\frac{1}{2} \times 6$	$6 \times AC \times \sin 0.9 = 32.4$	M1*		Use $\Delta = \frac{1}{2}bc \sin A$, or equiv
				M1de	-	Equate attempt at area to 32.4
		AC = 13.8 cm		A1	3	Obtain $AC = 13.8$ cm, or better
	(iii)	BC	$^{2} = 6^{2} + 13.8^{2} - 2 \times 6 \times 13.8 \times \cos 0.9$	M1		Attempt use of correct cosine formula in $\triangle ABC$
		Han	ce BC = 11.1 cm	A1√ A1		Correct unsimplified equation, from their AC
		Hen	ce BC = 11.1 cm	AI		Obtain $BC = 11.1$ cm, or anything that rounds to this
			$= 6 \times 0.9 = 5.4 \mathrm{cm}$	B1		State $BD = 5.4$ cm (seen anywhere in question)
		Hen	ce perimeter = $11.1 + 5.4 + (13.8 - 6)$	M1	_	Attempt perimeter of region BCD
			= 24.3 cm	A1	6	Obtain 24.3 cm, or anything that rounds to this
				_	11	
)	(i)	(a)	f(-1) = -1 + 6 - 1 - 4 = 0	B1	1	Confirm $f(-1) = 0$, through any method
		(b)	<i>x</i> = -1	B1		State $x = -1$ at any point
			$f(x) = (x+1)(x^2+5x-4)$	M1		Attempt complete division by $(x + 1)$, or equiv
				A1		$Obtain x^2 + 5x + k$
				A1		Obtain completely correct quotient
			$x = \frac{-5 \pm \sqrt{25 + 16}}{2}$	M1		Attempt use of quadratic formula, or equiv, find
			()			roots
			$x = \frac{1}{2} \left(-5 \pm \sqrt{41} \right)$	A1	6	Obtain $\frac{1}{2}\left(-5\pm\sqrt{41}\right)$
	(ii)	(a)	$\log_{2}(x+3)^{2} + \log_{2}x - \log_{2}(4x+2) = 1$	B1		State or imply that $2\log(x+3) = \log(x+3)^2$
				M1		Add or subtract two, or more, of their algebraic
			()			logs correctly
			$\log_2\left(\frac{(x+3)^2 x}{4x+2}\right) = 1$	A1		Obtain correct equation (or any equivalent, with
			()			single term
						on each side)
			$\frac{(x+3)^2x}{4x+2} = 2$	B1		Use $\log_2 a = 1 \Rightarrow a = 2$ at any point
			$(x^2 + 6x + 9)x = 8x + 4$			
			$x^3 + 6x^2 + x - 4 = 0$	A1	5	Confirm given equation correctly
		(b)	$x > 0$, otherwise $\log_2 x$ is undefined	B1*		State or imply that $\log x$ only defined for $x > 0$
		(0)	$x > 0$, otherwise $\log_2 x$ is underlined $x = \frac{1}{2}(-5 + \sqrt{41})$	B1√d	ep*	State of imply that $\log x$ only defined for $x > 0$ State $x = \frac{1}{2}(-5 + \sqrt{41})$ (or $x = 0.7$) only, following
			$x = 2$ ($z + \sqrt{2}$)	21,0	-r	their
					2	single positive root in (i)(b)
				F	14	