Mark Scheme 4723 June 2007

1 (i)	Attempt use of product rule	M1					
1 (1)	Obtain $3x^2(x+1)^5 + 5x^3(x+1)^4$	A1		2 or equiv			
	[Or: (following complete expansion and differentiation term by term)						
	Obtain $8x^7 + 35x^6 + 60x^5 + 50x^4 + 20x^3 + 3x^2$	B2		allow B1 if one term incorrect]			
(ii)	Obtain derivative of form $kx^3(3x^4+1)^n$	M1		any constants k and n			
	Obtain derivative of form $kx^3(3x^4+1)^{-\frac{1}{2}}$	M1					
	Obtain correct $6x^3(3x^4 + 1)^{-\frac{1}{2}}$	A1		3 or (unsimplified) equiv			
2	Identify critical value $x = 2$	B1					
	Attempt process for determining both						
	critical values	M1					
	Obtain $\frac{1}{3}$ and 2	A1		. 11 . 1 . 1			
	Attempt process for solving inequality	M1		table, sketch; implied by plausible answer			
	Obtain $\frac{1}{3} < x < 2$	A1	5	implied by plausione unswer			
3 (i)	Attempt correct process for composition	M1		numerical or algebraic			
J (1)	Obtain (16 and hence) 7	A1	2	_			
(ii)	Attempt correct process for finding inverse	M1		maybe in terms of y so far			
	Obtain $(x-3)^2$	A1	2	or equiv; in terms of x , not y			
(iii)	Sketch (more or less) correct $y = f(x)$	B1		with 3 indicated or clearly implied on <i>y</i> -axis, correct curvature, no maximum point			
	Sketch (more or less) correct $y = f^{-1}(x)$ State reflection in line $y = x$	B1 B1	3	right hand half of parabola only or (explicit) equiv; independent of earlier marks			
4 (i)	Obtain integral of form $k(2x+1)^{\frac{4}{3}}$	M1		or equiv using substitution; any constant k			
	Obtain correct $\frac{3}{8}(2x+1)^{\frac{4}{3}}$	A1		or equiv			
	Substitute limits in expression of form $(2x+1)^n$						
	and subtract the correct way round	M1		using adjusted limits if subn used			
	Obtain 30	A1	4				
(ii)	Attempt evaluation of $k(y_0 + 4y_1 + y_2)$	M1		any constant k			
	Identify k as $\frac{1}{3} \times 6.5$	A1					
	Obtain 29.6 [SR: (using Simpson's rule with 4 strips)	A1	3	or greater accuracy (29.554566)			
	Obtain $\frac{1}{3} \times 3.25(1 + 4 \times \sqrt[3]{7.5} + 2 \times \sqrt[3]{14} + 4 \times \sqrt[3]{20.5} + 3)$			(20.007)			
	and hence 29.9	B1		or greater accuracy (29.897)]			

		0.04			
5 (i)	State e	$^{-0.04t} = 0.5$	B1		or equiv
	Attemp	t solution of equation of form $e^{-0.04t} = k$	M1		using sound process; maybe implied
	Obtain	17	A1	3	or greater accuracy (17.328)
(ii)		ntiate to obtain form $k e^{-0.04t}$	*M1		constant k different from 240
	Obtain	$(\pm) 9.6e^{-0.04t}$	A1		or (unsimplified) equiv
		attempt at first derivative to (±) 2.1 and			
	attempt solution Obtain 38	M1 A1	4	dep *M; method maybe implied or greater accuracy (37.9956)	
6 (i)	Obtain	integral of form $k_1 e^{2x} + k_2 x^2$	M1		any non-zero constants k_1, k_2
	Obtain	correct $3e^{2x} + \frac{1}{2}x^2$	A1		
		$3e^{2a} + \frac{1}{2}a^2 - 3$	A1		
		-	AI		
	_	definite integral to 42 and attempt ngement	M1		using sound processes
		$m a = \frac{1}{2} \ln(15 - \frac{1}{6}a^2)$	A1	5	AG; necessary detail required
	Commi	$11 u = \frac{1}{2} \ln(13 e^{u})$	AI	J	AG, necessary detail required
(ii)	Obtain	correct first iterate 1.348	B1		
(11)	Attempt correct process to find at least	Di			
	2 iterate		M1		
		at least 3 correct iterates	A1	_	
	Obtain	1.344	A1	4	answer required to exactly 3 d.p.; allow recovery after error
		$[1 \to 1.34844 \to 1.3438]$	$2 \rightarrow 1$.	.343	•
7 (i)	Show c	orrect general shape (alternating above			
. (=)		ow x-axis)	M1		with no branch reaching x-axis
	Draw (more or less) correct sketch		A1	2	with at least one of 1 and -1 indicated or clearly implied
(ii)	Attemp	t solution of $\cos x = \frac{1}{3}$	M1		maybe implied; or equiv
	Obtain	1.23 or 0.392π	A1		or greater accuracy
	Obtain	5.05 or 1.61π	A1	3	or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once
(iii)	Either:	Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form	any A1	con	stant k; maybe implied
		θ , $\theta + \pi$	M1		within $0 \le x \le 2\pi$; allow degrees at this stage
		Obtain 1.37 and 4.51 (or 0.437π			6 -
		and 1.44π)	A1	4	allow ±1 in third sig fig; or greater accuracy
	<u>Or</u> :	(for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio	M1		
		Obtain correct value	A1		$\tan^2 \theta = 25, \cos^2 \theta = \frac{1}{26}, \dots$
		Attempt solution at least to find one value in first quadrant and one value			20
		in third Obtain 1.37 and 4.51	M1		
		(or equivs as above)	A1		ignoring values in second and fourth

quadrants

- Attempt use of quotient rule 8 (i)
 - Obtain $\frac{(4 \ln x + 3) \frac{4}{x} (4 \ln x 3) \frac{4}{x}}{(4 \ln x + 3)^2}$
 - Confirm $\frac{24}{x(4\ln x + 3)^2}$

- M1allow for numerator 'wrong way round'; or equiv
- A1 or equiv

B1

B1

B1

A1 3 AG; necessary detail required

- Identify $\ln x = \frac{3}{4}$ (ii)
 - State or imply $x = e^{\frac{3}{4}}$

- Substitute e^k completely in expression for derivative
- Obtain $\frac{2}{3}e^{-\frac{3}{4}}$

and deal with $\ln e^k$ term M1

or equiv

- **A**1 4 or exact (single term) equiv
- State or imply $\int \frac{4\pi}{x(4\ln x + 3)^2} dx$ (iii)

Obtain integral of form $k \frac{4 \ln x - 3}{4 \ln x + 3}$

or $k(4 \ln x + 3)^{-1}$

Substitute both limits and subtract right way

round Obtain $\frac{4}{21}\pi$

- *M1 any constant k
- M1dep *M
- A1 or exact equiv
- Attempt use of either of $tan(A \pm B)$ identities 9 (i)

Substitute $\tan 60^{\circ} = \sqrt{3}$ or $\tan^2 60^{\circ} = 3$

- Obtain $\frac{\tan \theta + \sqrt{3}}{1 \sqrt{3} \tan \theta} \times \frac{\tan \theta \sqrt{3}}{1 + \sqrt{3} \tan \theta}$
- Obtain $\frac{\tan^2 \theta 3}{1 3\tan^2 \theta}$

B1

M1

A1 or equiv (perhaps with tan 60°

still involved)

AG

- Use $\sec^2 \theta = 1 + \tan^2 \theta$ (ii)
 - Attempt rearrangement and simplification of

equation involving $\tan^2 \theta$

Obtain $\tan^4 \theta = \frac{1}{3}$ Obtain 37.2

Obtain 142.8

B1

A1

- M1 or equiv involving $\sec \theta$
- or equiv $\sec^2 \theta = 1.57735...$ A1
- **A**1 or greater accuracy
- A1 5 or greater accuracy; and no others between 0 and 180
- Attempt rearrangement of $\frac{\tan^2 \theta 3}{1 3 \tan^2 \theta} = k^2$ to form (iii)

 $\tan^2 \theta = \frac{f(k)}{g(k)}$

M1

Obtain $\tan^2 \theta = \frac{k^2 + 3}{1 + 3k^2}$

A1

Observe that RHS is positive for all k, giving one value in each quadrant

A1 3 or convincing equiv