Q1				
(i)	$\begin{aligned} & \rightarrow 40-P \cos 60=0 \\ & P=80 \end{aligned}$	M1 A1 A1	For any resolution in an equation involving P. Allow for $P=40 \cos 60$ or $P=40 \cos 30$ or $P=40$ $\sin 60$ or $P=40 \sin 30$ Correct equation cao	3
(ii)	$\downarrow \quad Q+P \cos 30=120$ $Q=40(3-\sqrt{3})=50.7179 \ldots \text { so } 50.7(3 \mathrm{~s} .$ f.)	M1 A1	Resolve vert. All forces present. Allow $\sin \leftrightarrow \cos$ No extra forces. Allow wrong signs. cao	2
				5

Q2				
(i)	Straight lines connecting $(0,10),(10,30)$, $(25,40) \text { and }(45,40)$	B1 B1 B1	Axes with labels (words or letter). Scales indicated. Accept no arrows. Use of straight line segments and horiz section All correct with salient points clearly indicated	3
(ii)	$\begin{aligned} & 0.5(10+30) \times 10+0.5(30+40) \times 15+40 \times 20 \\ & =200+525+800=1525 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt at area(s) or use of appropriate uvast Evidence of attempt to find whole area cao	3
(iii)	$\begin{gathered} 0.5 \times 40 \times T=1700-1525 \\ \text { so } 20 T=175 \text { and } T=8.75 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { F1 } \end{aligned}$	Equating triangle area to 1700 - their (ii) (1700 - their (ii))/20. Do not award for - ve answer.	2
				8

Q3				
(1)	String light and pulley smooth	E1	Accept pulley smooth alone	
(ii)	$5 g(49) \mathrm{N}$ thrust	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Three forces in equilibrium. Allow sign errors. for $15 g(147) \mathrm{N}$ used as a tension $5 g$ (49) N thrust. Accept $\pm 5 g$ (49). Ignore diagram. [Award SC2 for $\pm 5 g$ (49) N without 'thrust' and SC3 if it is]	
				4

Q4				
(i)	$\begin{aligned} & P-800=20000 \times 0.2 \\ & P=4800 \end{aligned}$	M1 A1 A1	N2L. Allow $F=m g a$. Allow wrong or zero resistance. No extra forces. Allow sign errors. If done as 1 equn need $m=20000$. If A and B analysed separately, must have 2 equns with ' T '. N2L correct.	3
(ii)	New accn $4800-2800=20000 a$ $a=0.1$	M1 A1	$F=m a$. Finding new accn. No extra forces. Allow 500 N but not 300 N omitted. Allow sign errors. FT their P	2
(iii)	$\begin{aligned} & T-2500=10000 \times 0.1 \\ & T=3500 \text { so } 3500 \mathrm{~N} \end{aligned}$	M1 A1	N2L with new a. Mass 10000. All forces present for A or B except allow 500 N omitted on A. No extra forces cao	2
				7

Q5				
	Take $F+$ ve up the plane $F+40 \cos 35=100 \sin 35$ $F=24.5915 \ldots \text { so } 24.6 \mathrm{~N} \text { (3 s. f.) }$ up the plane	M1 B1 A1 A1	Resolve // plane (or horiz or vert). All forces present. At least one resolved. Allow $\sin \leftrightarrow \cos$ and sign errors. Allow 100 g used. Either $\pm 40 \cos 35$ or $\pm 100 \sin 35$ or equivalent seen Accept ± 24.5915... or ± 90.1237... even if inconsistent or wrong signs used. 24.6 N up the plane (specified or from diagram) or equiv all obtained from consistent and correct working.	4
				4

Q6				
(i)	$(-\mathbf{i}+16 \mathbf{j}+72 \mathbf{k})+(-80 \mathbf{k})=8 \mathbf{a}$ $\mathbf{a}=\left(-\frac{1}{8} \mathbf{i}+2 \mathbf{j}-\mathbf{k}\right) \mathrm{m} \mathrm{s}^{-2}$	M1	E1	Use of N2L. All forces present. Need at least the \mathbf{k} term clearly derived
(ii)	$\mathbf{r}=4(\mathbf{i}-4 \mathbf{j}+3 \mathbf{k})+0.5 \times 16\left(-\frac{1}{8} \mathbf{i}+2 \mathbf{j}-\mathbf{k}\right)$	M1	Use of appropriate uvast or integration (twice) Correct substitution (or limits if integrated) A1	2

Q7				
(i)	$8 \mathrm{~m} \mathrm{~s}^{-1}$ (in the negative direction)	B1	Allow \pm and no direction indicated	1
(ii)	$\begin{aligned} & (t+2)(t-4)=0 \\ & \text { so } t=-2 \text { or } 4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Equating v to zero and solving or subst If subst used then both must be clearly shown	2
(iii)	$a=2 t-2$ $\begin{aligned} & a=0 \text { when } t=1 \\ & v(1)=1-2-8=-9 \end{aligned}$ so $9 \mathrm{~m} \mathrm{~s}^{-1}$ in the negative direction $(1,-9)$	M1 A1 F1 A1 B1	Differentiating Correct Accept -9 but not 9 without comment FT	5
(iv)	$\begin{aligned} & \hline \int_{1}^{4}\left(t^{2}-2 t-8\right) \mathrm{d} x \\ & =\left[\frac{t^{3}}{3}-t^{2}-8 t\right]_{1}^{4} \\ & =\left(\frac{64}{3}-16-32\right)-\left(\frac{1}{3}-1-8\right) \\ & =-18 \end{aligned}$ distance is 18 m	M1 A1 M1 A1 A1	Attempt at integration. Ignore limits. Correct integration. Ignore limits. Attempt to sub correct limits and subtract Limits correctly evaluated. Award if -18 seen but no need to evaluate Award even if -18 not seen. Do not award for -18. cao	5
(v)	$2 \times 18=36 \mathrm{~m}$	F1	Award for $2 \times$ their (iv).	1
(vi)	$\begin{aligned} & \int_{4}^{5}\left(t^{2}-2 t-8\right) \mathrm{d} x=\left[\frac{t^{3}}{3}-t^{2}-8 t\right]_{4}^{5} \\ & =\left(\frac{125}{3}-25-40\right)-\left(-\frac{80}{3}\right)=3 \frac{1}{3} \\ & \text { so } 3 \frac{1}{3}+18=21 \frac{1}{3} \mathrm{~m} \end{aligned}$	M1 A1 A1	$\int_{4}^{5} \text { attempted or, otherwise, complete method seen. }$ Correct substitution Award for $3 \frac{1}{3}+$ their (positive) (iv)	3
				17

\begin{tabular}{|c|c|c|c|c|}
\hline Q8 \& \& \& \& \\
\hline (i) \& \[
y=25 \sin \theta t+0.5 \times(-9.8) t^{2}
\]
\[
=7 t-4.9 t^{2}
\]
\[
x=25 \cos \theta t=25 \times 0.96 t=24 t
\] \& \begin{tabular}{l}
M1 \\
E1 \\
B1
\end{tabular} \& \begin{tabular}{l}
Use of \(s=u t+1 / 2 a t^{2}\).Accept sin, cos, 0.96, 0.28, \(\pm 9.8, \pm 10, u=25\) and derivation of -4.9 not clear. \\
Shown including deriv of -4.9 . Accept \(25 \sin \theta t=7 t \mathrm{WW}\) \\
Accept \(25 \times 0.96 t\) or \(25 \cos \theta t\) seen WW
\end{tabular} \& 3 \\
\hline (ii) \& \[
\begin{aligned}
\& 0=7^{2}-19.6 \mathrm{~s} \\
\& s=2.5 \text { so } 2.5 \mathrm{~m}
\end{aligned}
\] \& M1
A1 \& Accept sequence of \(u v a s t\). Accept \(u=24\) but not 25. Allow \(u \leftrightarrow v\) and \(\pm 9.8\) and \(\pm 10\) + ve answer obtained by correct manipulation. \& 2 \\
\hline (iii) \& \begin{tabular}{l}
Need \(7 t-4.9 t^{2}=1.25\) \\
so \(4.9 t^{2}-7 t+1.25=0\)
\[
\begin{aligned}
\& t=0.209209 \ldots \text { and } 1.219361 \ldots \\
\& \text { need } 24 \times(1.219 \ldots-0.209209 \ldots) \\
\& =24 \times 1.01 \ldots \text { so } 24.2 \mathrm{~m}(3 \text { s.f. })
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
B1
\end{tabular} \& \begin{tabular}{l}
Equate \(y\) to their (ii)/2 or equivalent. \\
Correct sub into quad formula of their 3 term quadratic being solved (i.e. allow manipulation errors before using the formula). \\
Both. cao. [Award M1 A1 for two correct roots WW] \\
FT their roots (only if both positive)
\end{tabular} \& 4 \\
\hline \begin{tabular}{l}
(iv) \\
(A) \\
(B) \\
(C)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \dot{y}=7-9.8 t \\
\& \dot{y}(1.25)=7-9.8 \times 1.25=-5.25 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
\] \\
Falling as velocity is negative \\
Speed is \(\sqrt{24^{2}+(-5.25)^{2}}\)
\[
=24.5675 \ldots \text { so } 24.6 \mathrm{~m} \mathrm{~s}^{-1} \text { (3 s. f.) }
\]
\end{tabular} \& M1
A1

E1

M1

A1 \& | Attempt at \dot{y}. Accept sign errors and $u=24$ but not 25 |
| :--- |
| Reason must be clear. FT their \dot{y} even if not a velocity Could use an argument involving time. Use of Pythag and 24 or 7 with their \dot{y} cao | \& 5 \\

\hline
\end{tabular}

(v)	$\begin{aligned} & y=7 t-4.9 t^{2}, x=24 t \\ & \text { so } y=\frac{7 x}{24}-4.9\left(\frac{x}{24}\right)^{2} \\ & y=\frac{7 x}{24}-4.9 \times \frac{x^{2}}{576}=\frac{0.7 x}{576}(240-7 x) \end{aligned}$ either Need $y=0$ so $x=0$ or $\frac{240}{7}$ so $\frac{240}{7} \mathrm{~m}$ or	M1 A1 E1 M1 A1 B1 B1	Elimination of t Elimination correct. Condone wrong notation with interpretation correct for the problem. If not wrong accept as long as $24^{2}=576$ seen. Condone wrong notation with interpretation correct for the problem. Accept $x=0$ not mentioned. Condone $0 \leq X \leq \frac{240}{7}$. Time of flight $10 / 7 \mathrm{~s}$ Range $240 / 7 \mathrm{~m}$. Condone $0 \leq X \leq \frac{240}{7}$.	
				19

