Q1				
(i)	$\rightarrow 40 - P\cos 60 = 0$	M1	For any resolution in an equation involving <i>P</i> . Allow for $P = 40 \cos 60$ or $P = 40 \cos 30$ or $P = 40 \sin 60$ or $P = 40 \sin 30$ Correct equation	
	<i>P</i> = 80	A1 A1	cao	3
(ii)	$\downarrow Q + P\cos 30 = 120$	M1	Resolve vert. All forces present. Allow $\sin \leftrightarrow \cos$ No extra forces. Allow wrong signs.	
	$Q = 40(3 - \sqrt{3}) = 50.7179$ so 50.7 (3 s. f.)	A1	cao	2
				5

Q2				
(i)	Straight lines connecting (0, 10), (10, 30), (25, 40) and (45, 40)	B1 B1 B1	Axes with labels (words or letter). Scales indicated. Accept no arrows. Use of straight line segments and horiz section All correct with salient points clearly indicated	3
(ii)	$0.5(10+30) \times 10 + 0.5(30+40) \times 15 + 40 \times 20$ $= 200 + 525 + 800 = 1525$	M1 M1 A1	Attempt at area(s) or use of appropriate <i>uvast</i> Evidence of attempt to find whole area cao	3
(iii)	$0.5 \times 40 \times T = 1700 - 1525$ so $20T = 175$ and $T = 8.75$	M1 F1	Equating triangle area to 1700 – their (ii) (1700 – their (ii))/20. Do not award for – ve answer.	2
				8

Q3				
(i)	String light and pulley smooth	E1	Accept pulley smooth alone	1
(ii)	5g (49) N thrust	M1 B1 A1	Three forces in equilibrium. Allow sign errors. for 15g (147) N used as a tension 5g (49) N thrust. Accept $\pm 5g$ (49). Ignore diagram. [Award SC2 for $\pm 5g$ (49) N without 'thrust' and SC3 if it is]	3
				4

Q4				
(i)	$P - 800 = 20000 \times 0.2$ P = 4800	M1 A1 A1	N2L. Allow $F = mga$. Allow wrong or zero resistance. No extra forces. Allow sign errors. If done as 1 equn need $m = 20\ 000$. If A and B analysed separately, must have 2 equns with ' <i>T</i> '. N2L correct.	3
(ii)	New accn $4800 - 2800 = 20000a$ a = 0.1	M1 A1	F = ma. Finding new accn. No extra forces. Allow 500 N but not 300 N omitted. Allow sign errors. FT their P	2
(iii)	$T - 2500 = 10000 \times 0.1$ T = 3500 so 3500 N	M1 A1	N2L with new <i>a</i> . Mass 10000. All forces present for A or B except allow 500 N omitted on A. No extra forces cao	2
				7

Q5				
	Take <i>F</i> +ve up the plane $F + 40 \cos 35 = 100 \sin 35$ <i>F</i> = 24.5915 so 24.6 N (3 s. f.)	M1 B1 A1	Resolve // plane (or horiz or vert). All forces present. At least one resolved. Allow $\sin \leftrightarrow \cos$ and sign errors. Allow 100g used. Either $\pm 40\cos 35$ or $\pm 100\sin 35$ or equivalent seen Accept ± 24.5915 or ± 90.1237 even if	
	up the plane	A1	inconsistent or wrong signs used. 24.6 N up the plane (specified or from diagram) or equiv all obtained from consistent and correct working.	4
				4

$(-\mathbf{i}+16\mathbf{j}+72\mathbf{k})+(-80\mathbf{k})=8\mathbf{a}$ $\mathbf{a} = \left(-\frac{1}{8}\mathbf{i}+2\mathbf{j}-\mathbf{k}\right)\mathbf{m}\ \mathbf{s}^{-2}$	M1 E1	Use of N2L. All forces present. Need at least the k term clearly derived	2
$\mathbf{r} = 4(\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}) + 0.5 \times 16\left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right)$ $= 3\mathbf{i} + 4\mathbf{k}$	M1 A1 A1	Use of appropriate uvas <i>t</i> or integration (twice) Correct substitution (or limits if integrated)	3
$\sqrt{3^2 + 4^2} = 5$ so 5 m	B1	FT their (ii) even if it not a displacement. Allow surd form	1
$\arctan \frac{4}{3}$ = 53.130 so 53.1° (3 s. f.)	M1 A1	Accept $\arctan \frac{3}{4}$. FT their (ii) even if not a displacement. Condone sign errors. (May use $\arcsin 4/5$ or equivalent. FT their (ii) and (iii) even if not displacement. Condone sign errors) cao	2
			8
	$\mathbf{a} = \left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right) \mathbf{m} \mathbf{s}^{-2}$ $\mathbf{r} = 4\left(\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}\right) + 0.5 \times 16\left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right)$ $= 3\mathbf{i} + 4\mathbf{k}$ $\sqrt{3^2 + 4^2} = 5 \text{ so } 5 \text{ m}$ $\arctan\frac{4}{3}$	$\mathbf{a} = \left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right) \text{m s}^{-2}$ E1 $\mathbf{r} = 4\left(\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}\right) + 0.5 \times 16\left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right)$ M1 A1	$\mathbf{a} = \left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right) \mathrm{m} \mathrm{s}^{-2}$ E1Need at least the \mathbf{k} term clearly derived $\mathbf{r} = 4(\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}) + 0.5 \times 16\left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right)$ M1Use of appropriate \mathbf{uvast} or integration (twice) $= 3\mathbf{i} + 4\mathbf{k}$ A1Correct substitution (or limits if integrated) $\sqrt{3^2 + 4^2} = 5 \mathrm{so} 5 \mathrm{m}$ B1FT their (ii) even if it not a displacement. Allow surd form $arctan \frac{4}{3}$ M1Accept arctan $\frac{3}{4}$. FT their (ii) even if not a displacement. Condone sign errors. (May use arcsin4/5 or equivalent. FT their (ii) and (iii) even if not displacement. Condone sign errors)

Mark Scheme

Q7				
(i)	8 m s ^{-1} (in the negative direction)	B1	Allow \pm and no direction indicated	1
(ii)	(t+2)(t-4) = 0 so $t = -2$ or 4	M1 A1	Equating <i>v</i> to zero and solving or subst If subst used then both must be clearly shown	2
(iii)	a = 2t - 2 a = 0 when $t = 1v(1) = 1 - 2 - 8 = -9$	M1 A1 F1	Differentiating Correct	
	so 9 m s ^{-1} in the negative direction	A1	Accept –9 but not 9 without comment	
	(1,-9)	B1	FT	5
(iv)	$\int_{-\infty}^{4} \left(t^2 - 2t - 8\right) \mathrm{d}x$	M1	Attempt at integration. Ignore limits.	
	$\int_{1}^{4} (t^{2} - 2t - 8) dx$ $= \left[\frac{t^{3}}{3} - t^{2} - 8t\right]_{1}^{4}$	A1	Correct integration. Ignore limits.	
	$=\left(\frac{64}{3}-16-32\right)-\left(\frac{1}{3}-1-8\right)$	M1	Attempt to sub correct limits and subtract	
	= -18 distance is 18 m	A1 A1	Limits correctly evaluated. Award if -18 seen but no need to evaluate Award even if -18 not seen. Do not award for -18. cao	
(v)				5
	$2 \times 18 = 36 \text{ m}$	F1	Award for $2 \times$ their (iv).	1
(vi)	$\int_{4}^{5} (t^2 - 2t - 8) dx = \left[\frac{t^3}{3} - t^2 - 8t\right]_{4}^{5}$	M1	\int_{4}^{5} attempted or, otherwise, complete method seen.	
	$= \left(\frac{125}{3} - 25 - 40\right) - \left(-\frac{80}{3}\right) = 3\frac{1}{3}$	A1	Correct substitution	
	so $3\frac{1}{3} + 18 = 21\frac{1}{3}$ m	A1	Award for $3\frac{1}{3}$ + their (positive) (iv)	
				3
				17

Q8				
(i)	$y = 25\sin\theta t + 0.5 \times (-9.8)t^2$	M1	Use of $s = ut + \frac{1}{2}at^2$. Accept sin, cos, 0.96, 0.28, ±9.8, ±10, $u = 25$ and derivation of - 4.9 not	
	$= 7t - 4.9t^{2}$ x = 25 cos θt = 25 × 0.96t = 24t	E1 B1	clear. Shown including deriv of – 4.9. Accept $25 \sin \theta t = 7t$ WW Accept $25 \times 0.96t$ or $25 \cos \theta t$ seen WW	3
(ii)	$0 = 7^2 - 19.6s$ s = 2.5 so 2.5 m	M1 A1	Accept sequence of <i>uvast</i> . Accept $u=24$ but not 25. Allow $u \leftrightarrow v$ and ± 9.8 and ± 10 +ve answer obtained by correct manipulation.	2
(iii)	Need $7t - 4.9t^2 = 1.25$ so $4.9t^2 - 7t + 1.25 = 0$	M1	Equate y to their (ii)/2 or equivalent.	
	30 4.97 77 11.25 - 0	M1	Correct sub into quad formula of their 3 term quadratic being solved (i.e. allow manipulation errors before using the formula).	
	t = 0.209209 and 1.219361	A1	Both. cao. [Award M1 A1 for two correct roots WW]	
	need $24 \times (1.219 0.209209)$ = 24×1.01 so $24.2 \text{ m} (3 \text{ s.f.})$	B1	FT their roots (only if both positive)	4
(iv) (A)	$\dot{y} = 7 - 9.8t$ $\dot{y}(1.25) = 7 - 9.8 \times 1.25 = -5.25 \text{ m s}^{-1}$	M1 A1	Attempt at \dot{y} . Accept sign errors and $u = 24$ but not 25	
(B)	Falling as velocity is negative	E1	Reason must be clear. FT their \dot{y} even if not a velocity Could use an argument involving time.	
(C)	Speed is $\sqrt{24^2 + (-5.25)^2}$	M1	Use of Pythag and 24 or 7 with their \dot{y}	
	= 24.5675 so 24.6 m s ^{-1} (3 s. f.)	A1	cao	5

(v)				
	$y = 7t - 4.9t^2, x = 24t$	M1	Elimination of <i>t</i>	
	so $y = \frac{7x}{24} - 4.9 \left(\frac{x}{24}\right)^2$	A1	Elimination correct. Condone wrong notation with interpretation correct for the problem.	
	$y = \frac{7x}{24} - 4.9 \times \frac{x^2}{576} = \frac{0.7x}{576} (240 - 7x)$	E1	If not wrong accept as long as $24^2 = 576$ seen.	
			Condone wrong notation with interpretation correct for the problem.	
	either			
	Need $y = 0$	M1		
	so $x = 0$ or $\frac{240}{7}$ so $\frac{240}{7}$ m	A1	Accept $x = 0$ not mentioned. Condone $0 \le X \le \frac{240}{7}$.	
	or	B1	Time of flight $\frac{10}{7}$ s	
		B1	Range ${}^{240}/_{7}$ m. Condone $0 \le X \le \frac{240}{7}$.	
				5
				19