Mark Scheme 4728 June 2007

1(i)	X = 5	B1	X=-5 B0. Both may be seen/implied in (ii)
	Y = 12	B1	No evidence for which value is X or Y available from (ii)
			award B1 for the pair of values 5 and 12 irrespective of
		[2]	order
(ii)	$R^2 = 5^2 + 12^2$	M1	For using $R^2 = X^2 + Y^2$
	Magnitude is 13 N	A 1	Allow 13 from X=-5
	$\tan \theta = 12/5$	M1	For using correct angle in a trig expression
	Angle is 67.4°	A1	SR: p=14.9 and Q=11.4 giving R=13+/-0.1 B2,
	C	[4]	Angle = $67.5 + /-0.5 \text{ B2}$
l .			
2(i)	$250 + \frac{1}{2}(290 - 250)$	M1	Use of the ratio 12:12 (may be implied), or $v = u+at$
.,	,		
	t = 270	A1	
		[2]	
(ii)		M1	The idea that area represents displacement
	½ x40x12+210x12+½x20x12-	M1	Correct structure, ie triangle1 + rectangle2 + triangle3 -
	$\frac{1}{2}$ x20x12 or $\frac{1}{2}$ x40x12+210x12		$ \text{triangle } \overline{4} $ with triangle $3 = \text{triangle } 4 $, triangle $1 + $
	or $\frac{1}{2}$ x(210+250)x12etc		rectangle2, trapezium1&2, etc
	Displacement is 2760m	A 1	
	•	[3]	
(iii)	appropriate structure, ie triangle +	M1	All terms positive
	rectangle + triangle + triangle ,		*
	triangle + rectangle + 2triangle, etc		
	Distance is 3000m	A1	Treat candidate doing (ii) in (iii) and (iii) in (ii)
		[2]	as a mis-read.
<u> </u>			
3(i)		M1	An equation with R, T and 50 in linear combination.
	$R + T\sin 72^{\circ} = 50g$	A1	R + 0.951T = 50g
		[2]	Č
(ii)	$T = 50g/\sin 72^{\circ}$	M1	Using $R = 0$ (may be implied) and $T\sin 72^{\circ} = 50(g)$
	T = 515 (AG)	A1	Or better
	T = mg	B1	
	m = 52.6	B1	Accept 52.5
		[4]	•
(iii)	$X = T\cos 72^{\circ}$	B1	Implied by correct
			answer
	X = 159	B1	Or better
		[2]	
4(i)	In Q4 right to left may be used as the	M1	For using Momentum 'before' is zero
	positive sense throughout.		•
	$0.18 \times 2 - 3m = 0$	A1	
	m = 0.12	A1	
		[3]	3 marks possible if g included consistently
(iia)	Momentum after	B1	
	$= -0.18 \times 1.5 + 1.5 \text{m}$		
	$0.18 \times 2 - 3m = -0.18 \times 1.5 + 1.5m$	M1	For using conservation of momentum
	m = 0.14	A1	
		[3]	3 marks possible if g included consistently
(iib)	$0.18 \times 2 - 3m$	B1ft	ft wrong momentum 'before'
` ′	= (0.18 + m)1.5		Č
	m = 0.02	B1	
	$0.18 \times 2 - 3m = -(0.18 + m)1.5$	B1ft	
	m = 0.42	B1	
		[4]	0 marks if g included
L		۲,۱	

5(i)		M1	Using $v^2 = u^2 + -2gs$ with $v = 0$ or $u = 0$
	$8.4^2 - 2gs_{max} = 0$	A1	
	Height is 3.6m (AG)	A1	
	-	[3]	
(ii)		M1	Using $u^2 = +/- 2g(ans(i) - 2)$
	u = 5.6	A1	
		[2]	
(iii)	EITHER (time when at same height)	M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +/-g$, expressions for
()	`		s terms must differ
	$s+/-2 = 8.4t - \frac{1}{2}gt^2$ and		Or 8.4t $(-\frac{1}{2} gt^2) = 5.6t (-\frac{1}{2} gt^2) + /-2$
	$(s+/-2) = 5.6t - \frac{1}{2}gt^2$	A 1	Correct sign for g, $cv(5.6)$, $\pm /-2$ in only one equation
	t = 5/7 (0.714)	A1	cao
	(3.1.)	M 1	Using $v = u$ +at for P and for Q, $a = +/-g$, $cv(t)$
	$v_P = 8.4 - 0.714g$ and $v_O = 5.6 - 0.714g$	A1	Correct sign for g, cv(5.6), candidates answer for t (including
	Transfer of the string		sign)
	$v_P = 1.4 \text{ and } v_O = -1.4$	A1	cao
	of the and of the	[6]	
	OR (time when at same speed in	[0]	
	opposite directions)	M1	Using $v = u+at$ for P and for Q, $a = +/-g$
	v = 8.4 -gt and $-v = 5.6$ -gt	A1	Correct sign for g, cv(5.6)
	v = 0.17 ge that $v = 3.0$ ge $v = 1.4$ {or $t = 5/7$ (0.714)}	A1	Only one correct answer is needed
	$V = 1.4 \{01 \ t = 3/7 \ (0.714)\}$	А	only one correct answer is needed
	(with $v = 1.4$)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(v)$
	$1.4^2 = 8.4^2 - 2gs_P$ and		2, 2, 3, 4, 7,
	$(-1.4)^2 = 5.6^2 - 2gs_0$	A 1	Correct sign for g, cv(5.6), candidate's answer for v (including
	` / Z Q		- for Q)
	$s_P = 3.5 \text{ and } s_O = 1.5$	A 1	cao
	$\{(\text{with } t=5/7)\}$		
		M 1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +/-g$, $cv(t)$
	$s = 8.4x0.714 - \frac{1}{2} gx0.714^2$ and		
	$s = 5.6x0.714 - \frac{1}{2}gx0.714^2$	A 1	Correct sign for g, cv(5.6), candidate's answer for t
			(including sign of t if negative)
	$s_P = 3.5 \text{ and } s_O = 1.5$	A 1	cao}
			,
	OR (motion related to greatest height		
	and verification)	M 1	Using $v = u+at t$ for P and for Q, $a = +/-g$
	0 = 8.4 - gt and $0 = 5.6 - gt$		
	t = 6/7 and $t = 4/7$	A1	Both values correct
	$v_P = 8.4 - 0.714g$ and $v_O = 5.6 - 0.714g$		mid-interval t $(6/7+4/7)/2 = 0.714$
	$\{0 = v_P - g/7 \text{ and } v_O = 0 + g/7\}$		{Or semi-interval = $6/7-4/7$)/2=1/7}
	$v_P = 1.4$ and $v_O = -1.4$	A1	cao
	$s_P = 8.4 \times 0.714 - \frac{1}{2} \text{ gx} \cdot 0.714^2$ and	M 1	$s = ut + \frac{1}{2} at^2$ for P and for Q, correct sign for g,
	$s_Q = 5.6 \times 0.714 - \frac{1}{2} g \times 0.714^2$		cv(5.6) and $cv(t)$
	$\{ s_P = 0/7 - \frac{1}{2}(-g)x(1/7)^2 \text{ and } \}$		$\{s = vt - \frac{1}{2} at^2 \text{ for P } and \ s = ut + \frac{1}{2} at^2 \text{ for Q} \}$
	$s_Q = 0/7 + \frac{1}{2} gx(1/7)^2$	A1	,
	$s_P = 3.5 \ s_O = 1.5$		
	$\{ s_P = 0.1 \ s_Q = 0.1 \}$	A1	cao
	(-1 0.2 by 0.2)		continued
L			

5(iii)	OR (without finding exactly where or		
	when)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(5.6)$,
	2 0.42 0 (/0) 1		different expressions for s.
cont	$v_P^2 = 8.4^2 - 2g(s+/-2)$ and		Correct sign for g, cv(5.6), (s+/-2) used only once
	$\frac{2}{100}$ $\frac{2}{100}$ $\frac{2}{100}$ $\frac{2}{100}$ $\frac{2}{100}$	A 1	cao. Verbal explanation essential
	$v_Q^2 = 5.6^2 - 2g[(s+/-2)]$ $v_P^2 = v_Q^2$ for all values of s so that	A1	Using $v = u+at t$ for P and for Q, $a = +/-g$
			Correct sign for g, correct choice for velocity of zero,
	the speeds are always the same at the		cv(5.6)
	same heights.	A1	
		M1	
	0 = 8.4 - gt and $0 = 5.6 - gt$	A1	
	$t_P = 6/7$ and $t_O = 4/7$ means there is a		
	time interval when Q has started to		cao. Verbal explanation essential
	descend but P is still rising, and there		•
	will be a position where they have the		
	same height but are moving in		
	opposite directions.	A1	

6(i)		M1	For differentiating s
	$v = 0.004t^3 - 0.12t^2 + 1.2t$	A1	Condone the inclusion of +c
	$v(10) = 4 - 12 + 12 = 4ms^{-1}$ (AG)	A1	Correct formula for v (no +c) and t=10
		[3]	stated sufficient
(ii)		M1	For integrating a
	$v = 0.8t - 0.04t^2 + (+C)$	A 1	
	8 - 4 + C = 4	M1*	Only for using $v(10) = 4$ to find C
	$v = 0.8x20 - 0.04x20^2 (+C)$	M1	
	$v(20) = 16 - 16 = 0 \tag{AG}$	DA1	Dependant on M1*
		[5]	
(iii)		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3 (+K)$	A 1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be
			linear)
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For using $S(10) = 30$ to find K
	$40 - 40/3 + K = 30 \rightarrow K = 10/3$	A1	Not if S includes ct
			term
	S(20) = 160 - 320/3 + 10/3 = 56.7m	B1	Accept 56.6 to 56.7, Adding 30 subsequently is not isw,
	OR	[6]	hence B0
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3$	A1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be linear)
		M1	Using limits of 10 and 20 (limits 0, 10 M0A0B0)
	S(20) - S(10) = 26.6, 26.7	A1	For $53.3 - 26.7$ or better (Note $S(10) = 26.7$ is
			fortuitously correct M0A0B0)
	displacement is 56.7m	B1	Accept 56.6 to 56.7

7(i)	$R = 1.5g\cos 21^{\circ}$	B1	
. (1)	8	M1	For using $F = \mu R$
	Frictional force is 10.98N	A1	Note 1.2gcos21=10.98 fortuitously, B0M0A0
	(AG)	[3]	, , , , , , , , , , , , , , , , , , ,
(ii)		M1	For obtaining an N2L equation relating to the block in which F,
			T, m and a are in linear combination or
			For obtaining an N2L equation relating to the object in which
			T, m and a are in linear combination
	$T + 1.5g\sin 21^{\circ} - 10.98 = 1.5a$	A2	-A1 for each error to zero
	1.2g - T = 1.2a	A2	-A1 for each error to zero
		[5]	Error is a wrong/omitted term, failure to substitute a numerical
			value for a letter (excluding g), excess terms. Minimise error
			count.
(iii)	T - 1.5a = 5.71	M1	For solving the simultaneous equations in T and a for a.
	and $1.2a + T = 11.76$		
	$a = 2.24 \tag{AG}$	A1	Evidence of solving needed
		[2]	2
(iva)	$v^2 = 2 \times 2.24 \times 2$	M1	For using $v^2 = 2as$ with cv (a) or 2.24
	Speed of the block is 2.99ms ⁻¹	A1	Accept 3
		[2]	
(ivb)		M1	For using $T = 0$ to find a
	a = -3.81	A1	
	$v^2 = 2.99^2 + 2 \text{ x (-3.81) x 0.8}$	M1	For using $v^2 = u^2 + 2as$ with $cv(2.99)$ and $s = 2.8 - 2$ and any
			value for a
	Speed of the block is 1.69ms ⁻¹	A1	Accept art 1.7 from correct work
		[4]	