ADVANCED SUBSIDIARY GCE UNIT
 MATHEMATICS (MEI)

Introduction to Advanced Mathematics (C1)

THURSDAY 7JUNE 2007

4751/01

Additional materials:
Answer booklet (8 pages)
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are not permitted to use a calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- \quad The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of 4 printed pages.		
HN/4	O OCR $2007[L / 102 / 2657]$	OCR is an exempt Charity

Section A (36 marks)

1 Solve the inequality $1-2 x<4+3 x$.

2 Make t the subject of the formula $s=\frac{1}{2} a t^{2}$.

3 The converse of the statement ' $P \Rightarrow Q^{\prime}$ is ' $Q \Rightarrow P^{\prime}$.
Write down the converse of the following statement.

$$
' n \text { is an odd integer } \Rightarrow 2 n \text { is an even integer.' }
$$

Show that this converse is false.

4 You are given that $\mathrm{f}(x)=x^{3}+k x+c$. The value of $\mathrm{f}(0)$ is 6 , and $x-2$ is a factor of $\mathrm{f}(x)$. Find the values of k and c.

5 (i) Find a, given that $a^{3}=64 x^{12} y^{3}$.
(ii) Find the value of $\left(\frac{1}{2}\right)^{-5}$.

6 Find the coefficient of x^{3} in the expansion of $(3-2 x)^{5}$.

7 Solve the equation $\frac{4 x+5}{2 x}=-3$.

8 (i) Simplify $\sqrt{98}-\sqrt{50}$.
(ii) Express $\frac{6 \sqrt{5}}{2+\sqrt{5}}$ in the form $a+b \sqrt{5}$, where a and b are integers.

9 (i) A curve has equation $y=x^{2}-4$. Find the x-coordinates of the points on the curve where $y=21$.
(ii) The curve $y=x^{2}-4$ is translated by $\binom{2}{0}$.

Write down an equation for the translated curve. You need not simplify your answer.

10 The triangle shown in Fig. 10 has height $(x+1) \mathrm{cm}$ and base $(2 x-3) \mathrm{cm}$. Its area is $9 \mathrm{~cm}^{2}$.

Not to
scale

Fig. 10
(i) Show that $2 x^{2}-x-21=0$.
(ii) By factorising, solve the equation $2 x^{2}-x-21=0$. Hence find the height and base of the triangle.

Section B (36 marks)
11

Not to
scale

Fig. 11
A circle has centre $C(1,3)$ and passes through the point $A(3,7)$ as shown in Fig. 11.
(i) Show that the equation of the tangent at A is $x+2 y=17$.
(ii) The line with equation $y=2 x-9$ intersects this tangent at the point T .

Find the coordinates of T .
(iii) The equation of the circle is $(x-1)^{2}+(y-3)^{2}=20$.

Show that the line with equation $y=2 x-9$ is a tangent to the circle. Give the coordinates of the point where this tangent touches the circle.

12 (i) Write $4 x^{2}-24 x+27$ in the form $a(x-b)^{2}+c$.
(ii) State the coordinates of the minimum point on the curve $y=4 x^{2}-24 x+27$.
(iii) Solve the equation $4 x^{2}-24 x+27=0$.
(iv) Sketch the graph of the curve $y=4 x^{2}-24 x+27$.

13 A cubic polynomial is given by $\mathrm{f}(x)=2 x^{3}-x^{2}-11 x-12$.
(i) Show that $(x-3)\left(2 x^{2}+5 x+4\right)=2 x^{3}-x^{2}-11 x-12$.

Hence show that $\mathrm{f}(x)=0$ has exactly one real root.
(ii) Show that $x=2$ is a root of the equation $\mathrm{f}(x)=-22$ and find the other roots of this equation.
(iii) Using the results from the previous parts, sketch the graph of $y=\mathrm{f}(x)$.

